

Notices

Carbonite Availability and Carbonite Migrate PowerShell Scripting Guide Version 8.2.2, Thursday, January 3, 2019

If you need technical assistance, you can contact CustomerCare. All basic configurations outlined in the online
documentation will be supported through CustomerCare. Assistance and support for advanced configurations may be
referred to a Pre-Sales Systems Engineer or to Professional Services.

Man pages are installed and available on Carbonite Availability and Carbonite Migrate Linux servers. These
documents are bound by the sameCarbonite license agreement as the software installation.

This documentation is subject to the following: (1) Change without notice; (2) Furnished pursuant to a license
agreement; (3) Proprietary to the respective owner; (4) Not to be copied or reproduced unless authorized pursuant to
the license agreement; (5) Provided without any expressed or implied warranties, (6) Does not entitle Licensee, End
User or any other party to the source code or source code documentation of anything within the documentation or
otherwise provided that is proprietary to Carbonite, Inc.; and (7) All Open Source and Third-Party Components
(“OSTPC”) are provided “AS IS” pursuant to that OSTPC’s license agreement and disclaimers of warranties and
liability.

Carbonite, Inc. and/or its affiliates and subsidiaries in the United States and/or other countries own/hold rights to
certain trademarks, registered trademarks, and logos. Hyper-V andWindows are registered trademarks of Microsoft
Corporation in the United States and/or other countries. Linux is a registered trademark of Linus Torvalds. vSphere is a
registered trademark of VMware. All other trademarks are the property of their respective companies. For a complete
list of trademarks registered to other companies, please visit that company’s website.

© 2019 Carbonite, Inc. All rights reserved.

Contents
Chapter 1 Carbonite Availability and Carbonite Migrate PowerShell overview 10

Carbonite PowerShell requirements 11
Installing the Carbonite PowerShell module 12
Importing the Carbonite PowerShell module 12

Chapter 2 Cmdlets 13
Add-DtPhysicalRule 16
Add-DtUvraPhysicalRule 18
Checkpoint-DtConnection 20
Checkpoint-DtConnectionSourceQueue 22
Close-DtWorkload 24
Confirm-DtJobOptions 25
Disconnect-DtServer 28
Edit-DtJob 29
Get-DtAccessLevel 31
Get-DtActivationStatus 32
Get-DtAllFailoverReports 33
Get-DtBandwidthLimit 34
Get-DtConnectionIds 36
Get-DtDiagnostics 37
Get-DtDnsOptions 38
Get-DtEmailNotificationOptions 41
Get-DtEventLogEntry 42
Get-DtJob 43
Get-DtJobActionStatus 45
Get-DtLatestFailoverReport 47
Get-DtLogicalItem 48
Get-DtLogMessage 49
Get-DtOnlineActivationRequest 51
Get-DtOption 52
Get-DtPathBlocking 53
Get-DtPhysicalItem 54
Get-DtProductInfo 55
Get-DtQualificationResults 56
Get-DtRecommendedFailbackOptions 58
Get-DtRecommendedFailoverOptions 60
Get-DtRecommendedJobOptions 62
Get-DtRecommendedPathTransform 64
Get-DtRecommendedRestoreOptions 65
Get-DtRepairJobOptionsStatus 67
Get-DtScriptCredentials 69
Get-DtServerInfo 70
Get-DtSnapshot 71
Get-DtSourceQueueSnapshot 73
Get-DtSourceQueueSnapshots 75
Get-DtUvraRecommendedFailoverOptions 77
Get-DtUvraRecommendedRemoveOptions 79

Contents 3

Get-DtVerificationStatus 81
Get-DtWorkload 82
Get-DtWorkloadPhysicalItem 83
Get-DtWorkloadType 84
Install-DoubleTake 85
Install-DtVmwareCertificate 89
Invoke-DtAddShares 90
Invoke-DtQueueTask 92
Invoke-DtRemoveShares 95
Merge-DtConsoleServerData 97
New-DtFilesAndFoldersJob 98
New-DtJob 100
New-DtServer 103
New-DtTaskParameters 105
New-DtUri 106
New-DtUvraServer 108
New-DtWorkload 110
Remove-DtJob 112
Remove-DtPhysicalRule 114
Remove-DtSnapshot 116
Remove-DtSourceQueueSnapshot 118
Repair-DtJobOptions 120
Request-DtOnlineActivation 123
Request-DtOnlineDeactivation 125
Restart-DtReplicationService 126
Resume-DtJob 127
Resume-DtMirror 129
Resume-DtTarget 131
Save-DtConsoleServerData 133
Save-DtJobDiagnostics 134
Set-DtActivationCode 136
Set-DtBandwidthLimit 138
Set-DtEmailNotificationOptions 140
Set-DtJobCredentials 141
Set-DtLogicalItemSelection 143
Set-DtOption 145
Set-DtPathBlocking 147
Set-DtScriptCredentials 148
Set-DtServerCredential 150
Set-DtVmwareCertificatePolicy 151
Start-DtJob 153
Start-DtJobFailback 155
Start-DtJobFailover 157
Start-DtJobRestore 159
Start-DtJobReverse 161
Start-DtMirror 163
Start-DtOrphansProcessing 165
Start-DtReplication 167
Start-DtVerify 169

Contents 4

Stop-DtJob 171
Stop-DtMirror 173
Stop-DtReplication 175
Stop-DtReplicationService 177
Suspend-DtJob 178
Suspend-DtMirror 180
Suspend-DtTarget 182
Test-DtActiveDirectoryCredentials 184
Test-DtEmailNotification 186
Test-DtScript 188
Test-DtScriptCredentials 190
Test-DtVmwareCertificatePolicy 192
Undo-DtJobFailover 194
Uninstall-DoubleTake 196
Update-DtJobStatus 197
Update-DtShares 199
Wait-DtConfirmJobOptions 201
Wait-DtMirrorComplete 203

Chapter 3 Classes 205
ActivationAttribute 209
ActivationCode 210
ActivationInformation 212
ActivationStatus 213
ActivityStatusEntry 214
ActivityToken 215
ApplicationOptions 216
BandwidthEntry 218
BandwidthLimit 219
BandwidthOptions 220
BandwidthSchedule 221
BandwidthScheduleEntry 222
BandwidthSpecification 223
ChangedItems 224
CloudOptions 225
ClusterFilesAndFoldersQualifcationResults 226
ClusterOptions 227
CompressionLevel 229
ConnectionId 230
ConnectionSchedule 231
ConnectionStartParameters 232
CoreConnectionDetails 234
CoreConnectionOptions 238
CoreMonitorDetails 239
CoreMonitorOptions 240
CoreQualificationResults 241
Credentials 243
CutoverDetails 244
DeleteOptions 245
Disk 246

Contents 5

DiskOptions 247
DnsDomainDetails 249
DnsOptions 250
DnsServerDetail 251
EmailNotificationOptions 252
EngineControlStatus 254
EventLogEntry 256
EventLogEntryType 257
ExtendedLowLevelStates 258
FailbackOptions 259
FailoverOptions 260
FailoverReport 261
FailoverScriptConfiguration 263
Feature 265
FilesAndFoldersOptions 266
FullServerFailoverOptions 267
FullServerJobDetails 268
FullServerNicMappings 269
FullServerTestFailoverOptions 270
Guid 271
IpAddressMap 272
JobAction 273
JobInfo 274
JobOptions 277
JobQualificationResults 280
JobStatistics 281
JobStatus 282
LogicalItems 284
LogicalVolume 285
LogMessage 288
LvmOptions 289
MachineInfoClass 290
MirrorParameters 291
MonitorConfiguration 292
MonitoredAddressConfiguration 294
MonitoredAddressStatus 295
MonitoringOptions 296
NetworkInterfaceInfo 297
OperatingSystemInfo 298
OperatingSystemVersion 299
OrphansSchedule 300
Partition 301
PathBlocking 302
PathTransformation 303
PhysicalItem 304
PhysicalRule 306
PhysicalVolume 307
ProductInfo 310
ProductVersion 312

Contents 6

PSCredential 313
RecommendedFailbackOptions 314
RecommendedFailoverOptions 315
RecommendedJobOptions 316
RecommendedRestoreOptions 317
RepairStatus 318
ReplicaVmInfo 319
RestoreOptions 321
RestoreParameters 322
ReverseOptions 323
ScriptPoint 324
Server 325
ServerActivationInformation 327
ServerInfo 328
ServerQualificationResults 331
ServiceInformation 332
ServiceMonitoringOptions 333
SnapshotAdvancedOptions 334
SnapshotEntry 335
SnapshotMonitorOptions 336
SnapshotSchedule 337
SnapshotSize 338
SourceQueueSnapshotEntry 339
SystemStateOptions 340
TargetFileServerQualificationResults 342
TargetServicesOptions 343
TargetServicesToStop 344
TargetStateInfo 345
TaskParameters 347
TestFailoverOptions 348
TestFailoverServerCredentials 349
TimeClass 350
UnicastIPAddressInfo 351
UnmanagedConnectionOptions 352
VerificationStatus 353
VerificationStep 354
VerifySchedule 355
VirtualNetworkInterfaceInfo 356
VirtualSwitchInfo 358
VirtualSwitchMapping 359
VmInfo 360
Volume 361
VolumeGroup 363
VolumeOptions 364
VolumeQualificationResults 367
VRAOptions 368
VRAQualificationResults 371
VRAWorkloadCustomizationOptions 372
Workload 373

Contents 7

WorkloadSupportSummary 375
WorkloadType 376

Chapter 4 Enumerations 378
AccessLevel 380
ActionStatus 381
ActiveDirectoryFailoverOptions 382
ActivityCompletionStatus 383
BandwidthEntryType 384
BandwidthScheduleMode 385
BandwidthSpecificationType 386
ClusterResourceState 387
DesktopInteractionMode 388
DiskConfigStrategy 389
EngineJobType 390
FailoverDataAction 392
FailoverIPAddressesOption 393
FailoverItems 394
FailoverMode 395
FailoverProcessingOptions 396
FailoverReplaceActions 397
FailoverStyle 398
FailoverTrigger 399
FailoverType.Monitor 400
FailoverType.Options 401
FileSystemAttributes 402
Health 403
HighAvailabilityState 404
HighLevelState 405
InclusionMode 408
LicenseType 409
MirrorComparisonCriteria 410
MirrorOperationOptions 411
MirrorState 412
OperatingSystemArchitecture 413
OperatingSystemProductType 414
PathBlockingMode 415
PingMethods 416
RecordType 417
RecursionMode 418
ReplicationSetUsageType 419
ReplicationState 420
RestoreParametersRestoreOptions 421
RestoreStates 422
RestoreStatus 423
SaturationLevel 424
ScriptExecutionMode 425
ScriptPointType 426
SmtpConnectionSecurity 427
SnapshotAttributes 428

Contents 8

SnapshotCreationReason 429
SnapshotQuality 430
SnapshotState 431
TargetServiceStatus 432
TargetStates 433
TransmissionMode 435
VmwareCertificatePolicy 436
Weekdays 437

Chapter 5 Scripting examples 438
Job creation scripts 439
Creating a files and folders job forWindows 440
Creating a full server job forWindows 442
Creating a full server job for Linux 444
Creating a SQL job 446
Creating a full server to ESX job forWindows 448
Creating a full server to ESX job for Linux 451
Creating a full server to Hyper-V job 455
Creating a files and folders migration job forWindows 457
Creating a full server migration job forWindows 459
Creating a full server to ESX migration job forWindows 461
Creating a full server to Hyper-V migration job 463

Job information scripts 465
Viewing job Event messages 466
Creating a job diagnostics file 468

Job control scripts 469
Validating an existing job 470
Editing a files and folders job forWindows 472
Changing the compression setting for an existing job 474
Stopping and starting a job 476
Pausing and resuming a job 478
Viewing and setting job and server options 480

Other sample scripts 482
Pausing and resuming your target 483
Shutting down the Double-Take service on a server 484
Hiding your password in a PowerShell script 485

Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping 486

Chapter 7 Server and job settings 501
Windows server and job settings 502
Linux server and job settings 536

Contents 9

Chapter 1 Carbonite Availability and Carbonite
Migrate PowerShell overview
Carbonite Availability and Carbonite Migrate includes Windows PowerShell cmdlets that you can use to control
most Carbonite features. This guide includes all of the Carbonite cmdlets available and several sample
scripts.However, this guide does not explain how to useWindows PowerShell. You should reference your
Windows PowerShell documentation and themany web sites devoted to PowerShell to learn how to use and
script withWindows PowerShell.

If you are looking for advanced PowerShell documentation, geared towards developers who will be programming
Carbonite to interact with other systems, youmay want to reference the Carbonite SDK site at
https://sdk.doubletake.com/double-take-sdk-resource-guide/. The Carbonite version 8.2 PowerShell
documentation on the SDK site is generated directly from Carbonite source code and is organized by contracts
and namespaces. This documentationmay bemore suitable for advanced developers.

Carbonite Reporting Service does not support PowerShell. You cannot configure or manage your
Carbonite Reporting Service server with any Carbonite PowerShell cmdlets.

The following terms and definitions will help you understand Carbonite basics. See theUser's Guide for your
Carbonite product for complete details on how that product works.

l Source—The source is the server that has the data you want to protect or migrate. Typically this is a
machine on the production network that serves data to clients.

l Target—The target is the server that maintains the replicated copy of the data that is being protected on the
source. Typically this is a backup server that may be local or in a remote data center. For migration jobs,
this is the final destination for your data.

l Workload—A workload is a logical definition of the data that is being protected or migrated on the source.
A workload can be a simple set of paths, for example, C:\Data or /usr. It may also be amore complex
logical item that maps tomultiple paths. For example, protecting a virtual machinemeans you are
protectingmultiple, specific virtual machine files, or protectingMicrosoft SQLmeans you are protecting a
SQL database and its related files.

l Workload manager—Theworkloadmanager is a web service that creates and configures the Carbonite
workload.

l Job—A job is a logical unit that includes the source, target, and the workload. The job is what you create
andmonitor in order to protect or migrate your data.

l Job manager—The jobmanager is a web service that creates, monitors, and controls the Carbonite job.
l Connection—The engine connection is the underlying stream that sends the actual replicated data
between the source and target servers. Jobs are higher-level objects that use the lower-level connection to
protect data.

l Architecture—EachCarbonite installation has two services, theManagement Service and Engine.
l Management Service—This service is displayed as Double-TakeManagement Service in the
Windows services list and jsvc on Linux. The service hosts the jobmanager and provides
monitoring and control for all job types. ForWCF clients, the service listens on port 6325. For non-
WCF clients, the service listens on port 6326. This service offers a SOAP-based XMLweb services
interface.

Chapter 1 Carbonite Availability and Carbonite Migrate PowerShell overview 10

https://sdk.doubletake.com/double-take-sdk-resource-guide/

l Engine—This service is displayed as Double-Take in theWindows service list and DT on Linux.
The service transmits the replicated data between the source and target servers. By default this
service listens on port 6320. You do not interact directly with this service.

l Roles—Any Carbonite installation can be a source, target, or both. The existence of a job between two
servers and which direction data is being transmitted determines the server’s role.

l Security—Carbonite enforces security by using local groups on each server where Carbonite is installed.
There are two levels of security. Administrator access allows full control of Carbonite on a server, and
monitor access allows read-only views of job information. When you connect to the jobmanager on a
server, you will need to provide the credentials of a user who is amember of one of the local groups on that
server.

l Job creation—To create a job, you will first communicate with the source to create a workload. You will
then use that workload object and communicate with the target to create the job.

l Monitoring and controlling jobs—Tomonitor and control jobs, you will communicate with the job
manager on the target of the job.

l WCF client—AMicrosoft Windows client application created usingWindows Communication Foundation,
which is a framework for building distributed, service-oriented applications usingWeb services to send and
receive data.

Carbonite PowerShell requirements
Carbonite requires Windows PowerShell version 4 or later.

If you are uncertain which version you have installed, check the PSVersion property of the $PSVersionTable
automatic variable. This variable does not exist in PowerShell version 1, so if the variable returns nothing, you
have version 1 installed. If you have version 2 or later installed, you will see a table of version information, showing
your major andminor version numbers.

Chapter 1 Carbonite Availability and Carbonite Migrate PowerShell overview 11

Installing the Carbonite PowerShell module
There are no additional steps required to install the Carbonite PowerShell module. It is automatically installed with
all Carbonite installations.

Importing the Carbonite PowerShell module
Youwill need to import themodule before you can begin using it. Use theWindows PowerShell import-module
cmdlet to import the DoubleTake.PowerShell.dll module. If you completed a server or client/server installation, the
module will be located in the \Service subdirectory where you installed Carbonite. If you completed a client only
installation, themodule will be located in the \Console subdirectory where you installed Carbonite. By default, the
installation location is \Program Files\Carbonite\Replication. For example, using the default server installation
lcoation, the cmdlet would be import-module "C:\Program
Files\Carbonite\Replication\Service\DoubleTake.PowerShell.dll" or using the default client only installation
location, the cmdlet would be import-module "C:\Program
Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll".

If nothing is returned, then the import cmdlet was successful.

The import-module cmdlet only imports amodule into the current session. If you need tomake the Carbonite
PowerShell module available to all sessions, you will need to add an import-module cmdlet to yourWindows
PowerShell profile. See your PowerShell documentation for more information about profiles.

Chapter 1 Carbonite Availability and Carbonite Migrate PowerShell overview 12

Chapter 2 Cmdlets
The following cmdlets are available in Carbonite.

l Add-DtPhysicalRule on page 16
l Add-DtUvraPhysicalRule on page 18
l Checkpoint-DtConnection on page 20
l Checkpoint-DtConnectionSourceQueue on page 22
l Close-DtWorkload on page 24
l Confirm-DtJobOptions on page 25
l Disconnect-DtServer on page 28
l Edit-DtJob on page 29
l Get-DtAccessLevel on page 31
l Get-DtActivationStatus on page 32
l Get-DtAllFailoverReports on page 33
l Get-DtBandwidthLimit on page 34
l Get-DtConnectionIds on page 36
l Get-DtDiagnostics on page 37
l Get-DtDnsOptions on page 38
l Get-DtEmailNotificationOptions on page 41
l Get-DtEventLogEntry on page 42
l Get-DtJob on page 43
l Get-DtJobActionStatus on page 45
l Get-DtLatestFailoverReport on page 47
l Get-DtLogicalItem on page 48
l Get-DtLogMessage on page 49
l Get-DtOnlineActivationRequest on page 51
l Get-DtOption on page 52
l Get-DtPathBlocking on page 53
l Get-DtPhysicalItem on page 54
l Get-DtProductInfo on page 55
l Get-DtQualificationResults on page 56
l Get-DtRecommendedFailbackOptions on page 58
l Get-DtRecommendedFailoverOptions on page 60
l Get-DtRecommendedJobOptions on page 62
l Get-DtRecommendedPathTransform on page 64
l Get-DtRecommendedRestoreOptions on page 65
l Get-DtRepairJobOptionsStatus on page 67
l Get-DtScriptCredentials on page 69
l Get-DtServerInfo on page 70
l Get-DtSnapshot on page 71

Chapter 2 Cmdlets 13

l Get-DtSourceQueueSnapshot on page 73
l Get-DtSourceQueueSnapshots on page 75
l Get-DtUvraRecommendedFailoverOptions on page 77
l Get-DtUvraRecommendedRemoveOptions on page 79
l Get-DtVerificationStatus on page 81
l Get-DtWorkload on page 82
l Get-DtWorkloadPhysicalItem on page 83
l Get-DtWorkloadType on page 84
l Install-DoubleTake on page 85
l Install-DtVmwareCertificate on page 89
l Invoke-DtAddShares on page 90
l Invoke-DtQueueTask on page 92
l Invoke-DtRemoveShares on page 95
l Merge-DtConsoleServerData on page 97
l New-DtFilesAndFoldersJob on page 98
l New-DtJob on page 100
l New-DtServer on page 103
l New-DtTaskParameters on page 105
l New-DtUri on page 106
l New-DtUvraServer on page 108
l New-DtWorkload on page 110
l Remove-DtJob on page 112
l Remove-DtPhysicalRule on page 114
l Remove-DtSnapshot on page 116
l Remove-DtSourceQueueSnapshot on page 118
l Repair-DtJobOptions on page 120
l Request-DtOnlineActivation on page 123
l Request-DtOnlineDeactivation on page 125
l Restart-DtReplicationService on page 126
l Resume-DtJob on page 127
l Resume-DtMirror on page 129
l Resume-DtTarget on page 131
l Save-DtConsoleServerData on page 133
l Save-DtJobDiagnostics on page 134
l Set-DtActivationCode on page 136
l Set-DtBandwidthLimit on page 138
l Set-DtEmailNotificationOptions on page 140
l Set-DtJobCredentials on page 141
l Set-DtLogicalItemSelection on page 143
l Set-DtOption on page 145
l Set-DtPathBlocking on page 147

Chapter 2 Cmdlets 14

l Set-DtScriptCredentials on page 148
l Set-DtServerCredential on page 150
l Set-DtVmwareCertificatePolicy on page 151
l Start-DtJob on page 153
l Start-DtJobFailback on page 155
l Start-DtJobFailover on page 157
l Start-DtJobRestore on page 159
l Start-DtJobReverse on page 161
l Start-DtMirror on page 163
l Start-DtOrphansProcessing on page 165
l Start-DtReplication on page 167
l Start-DtVerify on page 169
l Stop-DtJob on page 171
l Stop-DtMirror on page 173
l Stop-DtReplication on page 175
l Stop-DtReplicationService on page 177
l Suspend-DtJob on page 178
l Suspend-DtMirror on page 180
l Suspend-DtTarget on page 182
l Test-DtActiveDirectoryCredentials on page 184
l Test-DtEmailNotification on page 186
l Test-DtScript on page 188
l Test-DtScriptCredentials on page 190
l Test-DtVmwareCertificatePolicy on page 192
l Undo-DtJobFailover on page 194
l Uninstall-DoubleTake on page 196
l Update-DtJobStatus on page 197
l Update-DtShares on page 199
l Wait-DtConfirmJobOptions on page 201
l Wait-DtMirrorComplete on page 203

Chapter 2 Cmdlets 15

Add-DtPhysicalRule
Adds a physical rule to a workload

Syntax
Add-DtPhysicalRule [-ServiceHost] <Server> [-WorkloadId] <Guid> -Path <String> [-Exclude] [-NonRecursive]
[<CommonParameters>]

Add-DtPhysicalRule [-ServiceHost] <Server> [-WorkloadId] <Guid> [-Rule] <PhysicalRule>
[<CommonParameters>]

Detailed Description
This cmdlet adds a physical rule to the specified workload on the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.
For this cmdlet, the -ServiceHost should be your
source server.

true false

WorkloadId Guid on page
271

Specify the workloadGUID returned from the New-
DtWorkload cmdlet using the workload type name
parameter. See New-DtWorkload on page 110.

true false

Exclude Switch
Parameter

Exclude the specified path frommirroring and
replication. If you do not specify this option, the path
will be included for mirroring and replication.

false false

NonRecursive Switch
Parameter

Do not apply the rule to the subdirectories of the
specified path. If you do not specify this option, the
subdirectories of the specified path will be
included/excluded.

false false

Path String Specify the path on the source that contains the
data that you want to protect

true false

Rule PhysicalRule
on page 306

Use theWindows PowerShell New-Object cmdlet
to create a physical rule object from
DoubleTake.Common.Contract.PhysicalRule.

true false

Outputs
ChangedItems on page 224

Chapter 2 Cmdlets 16

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadTypeName
FilesAndFolders

$DtPhysicalPath = New-Object DoubleTake.Common.Contract.PhysicalRule -Property @
{Path="C:\DirName"}

Add-DtPhysicalRule -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGuid -Rule
$DtPhysicalPath

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The script then creates a workload on the server for
a files and folders job, returning a global unique ID for the workload, and assigns that ID to the variable
DtWorkloadGuid. A new object is created from Double-Take.Common.Contract.PhysicalRule to store the
physical path C:\DirName in the variable DtPhysicalPath. Finally, the physical rule is added to the workload on
the server. The connections for the server object are then closed.

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadTypeName
FilesAndFolders

Add-DtPhysicalRule -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGuid -Path "C:\DirName"

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The script then creates a workload on the server for
a files and folders job, returning a global unique ID for the workload, and assigns that ID to the variable
DtWorkloadGuid. A physical rule is then created for the path C:\DirName. The connections for the server object
are then closed.

Chapter 2 Cmdlets 17

Add-DtUvraPhysicalRule
Adds a physical rule to a workload

Syntax
Add-DtUvraPhysicalRule [-ServiceHost] <Server> [-Workload] <Workload> -Path <String> [-Recurse] [-Exclude]
[<CommonParameters>]

Add-DtUvraPhysicalRule [-ServiceHost] <Server> [-Workload] <Workload> [-Rule] <PhysicalRule>
[<CommonParameters>]

Detailed Description
This cmdlet adds a physical rule to the specified full server to ESX appliance workload on the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtUvraServer cmdlet. See New-DtUvraServer on page
108. For this cmdlet, the -ServiceHost should be your
source server.

true false

Workload Workload on
page 373

Specify the workload object returned from theGet-
DtWorkload cmdlet. SeeGet-DtWorkload on page 82.

true false

Path String Specify the path on the source that contains the data
that you want to protect

true false

Recurse Switch
Parameter

Apply the rule to the subdirectories of the specified path.
If you do not specify this option, the subdirectories of
the specified path will not be included/excluded.

false false

Exclude Switch
Parameter

Exclude the specified path frommirroring and
replication. If you do not specify this option, the path will
be included for mirroring and replication.

false false

Rule PhysicalRule
on page 306

Use theWindows PowerShell New-Object cmdlet to
create a physical rule object from
DoubleTake.Common.Contract.PhysicalRule.

true false

Outputs
Workload on page 373

Examples

$DtServerObjectAlpha= New-DtUvraServer -Name alpha -UserName domain\administrator -Password

Chapter 2 Cmdlets 18

password -Port 6325

$DtApplianceObject = New-DtUvraServer -Name beta -UserName root -Password password -Port 6325

$DtApplianceHost = New-DtUvraServer -Name gamma -UserName root -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadTypeName Lvra

$DtWorkload = Get-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGuid

$DtRecommendedJobOptions = Get-DtRecommendedJobOptions -ServiceHost $DtApplianceObject -Source
$DtServerObjectAlpha -JobType Lvra -Workload $DtWorkload

Add-DtUvraPhysicalRule -ServiceHost $DtApplianceObject -Workload
$DtRecommendedJobOptions.JobOptions.Workload -Path "/home"

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

Disconnect-DtServer -ServiceHost $DtApplianceObject

Disconnect-DtServer -ServiceHost $DtApplianceHost

Three server objects are created for the source, the appliance, and the ESX server hosting the appliance,
assigning the server objects to the DtServerObjectAlpha, DtApplianceObject, and DtApplianceHost variables,
respectively. Then proxy and host information is retrieved for those server objects, storing the information in
DtProxyInfo and DtVmHostInfo, respectively. That information is then used to retrieve the recommended job
options. A rule for the path C:\Documents and Settings is added to the recommended job options. The
connections for the server object are then closed.

Chapter 2 Cmdlets 19

Checkpoint-DtConnection
Creates a snapshot

Syntax
Checkpoint-DtConnection [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Checkpoint-DtConnection [-ServiceHost] <Server> -JobInfo <JobInfo> [<CommonParameters>]

Detailed Description
This cmdlet creates a snapshot of the source replica data on the target. The snapshot of the source replica data is
taken immediately on the target when the snapshot is requested.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Checkpoint-DtConnection -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable

Chapter 2 Cmdlets 20

DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. Then a snapshot
of the replica data on the target is taken. The connections for the server object are then closed.

Chapter 2 Cmdlets 21

Checkpoint-DtConnectionSourceQueue
Creates a coordinated snapshot

Syntax
Checkpoint-DtConnectionSourceQueue [-ServiceHost] <Server> [-CorrelationId] <Guid> [-JobIds]
<IEnumerable> [<CommonParameters>]

Detailed Description
This cmdlet creates a coordinated snapshot of the source replica data on the target. This type of snapshot is not
taken immediately. It is queued on the source at the time the snapshot is requested. The snapshot request
operation will be transmitted in order with any other pending operations. When the snapshot operation is
processed on the target, the snapshot will then be taken. This feature allows you to take a snapshot at the source
time, rather than the target time. In the case of multiple servers, you can coordinate the snapshot time on the
multiple source servers, rather than the varying times of the replica data on the target.

Keep inmind, since coordinated snapshots will not be taken until all of the operations ahead of the snapshot
request in the source queue have been processed on the target, coordinated snapshots may be in a pending state
for a while. Also the sourcemust be accessible in order for the coordinated snapshot to be taken.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.
For this cmdlet, the -ServiceHost should be your
target server.

true false

CorrelationId Guid Specify a uniqueGUID which coordinates snapshots
across jobs. This GUID is required even if you are only
using one job. TheGUID must be 32 hexadecimal
digits and 4 dashes in the format xxxxxxxx-xxxx-
xxxx-xxxx-xxxxxxxxxxxx, which is format 8-4-4-4-12.
You can create this GUID on your own or use the
PowerShell New-Guid cmdlet to generate one for you.

true false

JobIds IEnumerable Specify an array of job GUIDs. A job GUID is returned
from the New-DtJob cmdlet or the Id within the job
information returned from theGet-DtJob cmdlet. See
New-DtJob on page 100 andGet-DtJob on page 43.

true false

Outputs
None

Chapter 2 Cmdlets 22

Examples

$CorId=New-Guid

$Source1Uri = "dtms://112.42.7.63:6325/"

$Source2Uri = "dtms://112.42.7.71:6325/"

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJob1 = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object { $_.SourceHostUri -eq $Source1Uri}

$DtJob2 = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object { $_.SourceHostUri -eq $Source2Uri}

$DtJobsArray = New-Object "System.Collections.Generic.List[Guid]"

$DtJobsArray.Clear()

$DtJobsArray.Add($DtJob1.Id)

$DtJobsArray.Add($DtJob2.Id)

Checkpoint-DtConnectionSourceQueue -ServiceHost $DtServerObjectBeta -CorrelationId $CorId -JobIds
$DtJobsArray.ToArray()

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

Several variables are set including a unique correlation ID for the snapshots that will be taken as well as URI
identifiers for the source servers of existing jobs. A server object is created for the server beta using the
domain\administrator and password credentials. It assigns the server object to the variable called
DtServerObjectBeta. The jobs are retrieved from DtServerObjectBeta, and the job information is inserted into
unique variables. An array of job IDs is then created. A coordinated snapshot is taken using the specified
correlation ID and the jobs stored in the array. Only those jobs will have coordinated snapshots. The connections
for the server object are then closed.

Chapter 2 Cmdlets 23

Close-DtWorkload
Closes the workload

Syntax
Close-DtWorkload [-ServiceHost] <Server> [-WorkloadId] <Guid> [<CommonParameters>]

Detailed Description
This cmdlet closes the workload creation process on the specified server and removes all resources associated
with the workload creation process.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your source server.

true false

WorkloadId Guid on
page 271

Specify the workloadGUID returned from the New-
DtWorkload cmdlet using the workload type name
parameter. See New-DtWorkload on page 110.

true false

Outputs
None

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadTypeName
FilesAndFolders

Close-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGuid

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The script then creates a workload on the server for
a files and folders job, returning a global unique ID for the workload, and assigns that ID to the variable
DtWorkloadGuid. The workload is then closed on the server. The connections for the server object are then
closed.

Chapter 2 Cmdlets 24

Confirm-DtJobOptions
Starts job validation

Syntax
Confirm-DtJobOptions [-ServiceHost] <Server> [-JobId] <Guid> [-JobOptions] <JobOptions>
[<CommonParameters>]

Confirm-DtJobOptions [-ServiceHost] <Server> [-Source] <Server> [-JobType] <String> [-JobOptions]
<JobOptions> [-OtherServers <Server[]>] [<CommonParameters>]

Confirm-DtJobOptions [-ServiceHost] <Server> [-CreateOptions] <CreateOptions> [<CommonParameters>]

Detailed Description
This cmdlet starts the job validation process, confirming the job options returned from theGet-
DtRecommendedJobOptions cmdlet are compatible with the source and target servers you are using. View the
details of the validation by using Get-DtVerificationStatus. SeeGet-DtRecommendedJobOptions on page 62 and
Get-DtVerificationStatus on page 81. Do not confuse this process with the verification process that confirms if the
data between the source and target are synchronized.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned from
theGet-DtJob cmdlet. See New-DtJob on page 100 and
Get-DtJob on page 43.

true false

JobOptions JobOptions
on page
277

Specify the JobOptions returned from theGet-
DtRecommendedJobOptions cmdlet. SeeGet-
DtRecommendedJobOptions on page 62.

true false

Source Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.

true false

JobType String This value is the job type name.

l Availability for Windows jobs
l FilesAndFolders—Files and folders
l ClusterAwareFilesAndFolders—
Cluster-aware files and folders

true false

Chapter 2 Cmdlets 25

Name Type Description Required Pipeline
Input

l SQL—SQL
l ClusterAwareSql—Cluster-aware SQL
l FullServerFailover—Full server
l VRA—Full server to ESX or full server to
Hyper-V

l Availability for Linux jobs
l LinuxFilesAndFolders—Files and folders
l LinuxFullServerFailover—Full server
l Lvra—Full server to ESX

l Migrate for Windows jobs
l MoveDataOnlyMigration—Files and
folders migration

l MoveServerMigration—Full server
migration

l VraMove—Full server to ESX migration or
full server to Hyper-V migration

l Migrate for Linux jobs
l LinuxMoveServerMigration—Full server
migration

l MoveLvra—Full server to ESX migration
l Other jobs

l Diagnostics—Throughput Diagnostic
Utility

Other
Servers

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.
Specify multiple server objects in an array using the
format @($server1, $server2).

false false

Create
Options

Create
Options

Specify the create options available in
DoubleTake.Jobs.Contract.CreateOptions. Use the
Windows PowerShell New-Object cmdlet to create this
object.

true false

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Chapter 2 Cmdlets 26

$DtValidation = Confirm-DtJobOptions -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -
JobOptions $DtJob.Options

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The job options
used by the job are confirmed, and the validation result is stored in DtValidation. The connections for the server
object are then closed.

Chapter 2 Cmdlets 27

Disconnect-DtServer
Closes WCF connections

Syntax
Disconnect-DtServer [-ServiceHost] <Server> [<CommonParameters>]

Detailed description
This cmdlet closes all WCF (Windows Communication Foundation) connections that have been opened during
use of the server object.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost could be your source or target server.

true false

Outputs
None

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The connections for the server object are then
closed.

Chapter 2 Cmdlets 28

Edit-DtJob
Edits a job

Syntax
Edit-DtJob [-ServiceHost] <Server> [-JobId] <Guid> [-JobOptions] <JobOptions> [<CommonParameters>]

Edit-DtJob [-ServiceHost] <Server> [-JobOptions] <JobOptions> -JobInfo <JobInfo> [<CommonParameters>]

Detailed Description
This cmdlet allows you to edit an existing job that is stopped or running, using a JobOptions object that has been
modified with your edited job settings.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned from
theGet-DtJob cmdlet. See New-DtJob on page 100 and
Get-DtJob on page 43.

true false

JobOptions JobOptions
on page
277

Specify the JobOptions returned from theGet-
DtRecommendedJobOptions cmdlet. SeeGet-
DtRecommendedJobOptions on page 62.

true false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. SeeGet-DtJob on page 43. The job information
can be piped from theGet-DtJob cmdlet and used in this
cmdlet.Specify multiple job information objects in an
array using the format @($JobInfo1, $JobInfo2).

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Chapter 2 Cmdlets 29

$DtJobForAlpha.Options.CoreMonitorOptions.TotalTimeAllowed="00:10:00"

Edit-DtJob -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -JobOptions
$DtJobForAlpha.Options

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. A job option is
changed. In this case, the total time before failover is triggered is set to 10minutes. Finally, the job options are
used to edit the specified job. The connections for the server object are then closed.

Chapter 2 Cmdlets 30

Get-DtAccessLevel
Returns the security access level

Syntax
Get-DtAccessLevel [-ServiceHost] <Server> [<CommonParameters>]

Detailed Description
This cmdlet returns the Carbonite security access level for the credentials stored in the specified server object.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost could be your source or target server.

true false

Outputs
AccessLevel on page 380

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Get-DtAccessLevel -ServiceHost $DtServerObjectAlpha
Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the Carbonite security access level for that
server is returned. The connections for the server object are then closed.

Chapter 2 Cmdlets 31

Get-DtActivationStatus
Returns license key validation information

Syntax
Get-DtActivationStatus [-ServiceHost] <Server> [[-Code] <String[]>] [[-AdditionalCode] <String[]>]
[<CommonParameters>]

Detailed Description
This cmdlet returns the Carbonite license key validation information for the specified server. If you do not provide
the code parameter, the license key currently in use will be returned. Specifying the key will return what the
activation status would be if the key was applied using Set-DtActivationCode on page 136.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost could be your source or target server.

true false

Code String Specify the 24-character, alpha-numeric license key
which applies the appropriate Carbonite license to your
Carbonite server. Specify multiple keys in an array using
the format @(code1, code2).

false false

Additional
Code

String Specify any additional keys. Specify multiple keys in an
array using the format @(code1, code2).

false false

Outputs
ActivationStatus on page 213

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Get-DtActivationStatus -ServiceHost $DtServerObjectAlpha
Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the validation information for the Carbonite
license key assigned to the server is returned. The connections for the server object are then closed.

Chapter 2 Cmdlets 32

Get-DtAllFailoverReports
Returns all failover reports

Syntax
Get-DtAllFailoverReports [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Detailed Description
This cmdlet returns all of the failover reports for the specified job, sorted from newest to oldest. The report will be
located on the target in the \Service\Reports directory where Carbonite is installed or in

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

Outputs
FailoverReport on page 261

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobInfo = Get-DtJob -ServiceHost $DtServerObjectBeta

Get-DtAllFailoverReports -ServiceHost $DtServerObjectBeta -JobId $DtJobInfo.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. All job information for all of the jobs on the server beta
are stored in the variable DtJobInfo. This type of usage is commonwhen the jobs were created in the past or if you
did not store or do not know a job's ID. All failover reports for the job $DtJobInfo.Id are returned. The connections
for the server object are then closed.

Chapter 2 Cmdlets 33

Get-DtBandwidthLimit
Returns bandwidth limiting configuration

Syntax
Get-DtBandwidthLimit [-ServiceHost] <Server> [-JobId] <Guid> [-ConnectionId <Guid>]
[<CommonParameters>]

Get-DtBandwidthLimit [-ServiceHost] <Server> -JobInfo <JobInfo> [-ConnectionId <Guid>]
[<CommonParameters>]

Detailed Description
This cmdlet returns the bandwidth limiting configuration for the specified job .

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned from
theGet-DtJob cmdlet. See New-DtJob on page 100
andGet-DtJob on page 43.

true false

Connection
Id

ConnectionId
on page 230

Specify the connection ID returned from theGet-
DtConnectionIds cmdlet. SeeGet-DtConnectionIds on
page 36.

false false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-
DtJob cmdlet. The job information can be piped from
theGet-DtJob cmdlet and used in this cmdlet. See
Get-DtJob on page 43.

true true

Outputs
BandwidthLimit on page 219

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Chapter 2 Cmdlets 34

Get-DtBandwidthLimit -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The bandwidth
limiting configuration is then returned. The connections for the server object are then closed.

Chapter 2 Cmdlets 35

Get-DtConnectionIds
Returns connection ID

Syntax
Get-DtConnectionIds [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Detailed Description
This cmdlet returns the connection ID associated with the specified job .

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

Outputs
ConnectionId on page 230

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

$DtConIdForAlpha = Get-DtConnectionIds -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The connection
ID for the job is then stored in DtConIdForAlpha. The connections for the server object are then closed.

Chapter 2 Cmdlets 36

Get-DtDiagnostics
Collects support diagnostics

Syntax
Get-DtDiagnostics [-ServiceHost] <Server> [-OutputDirectory] <String> [<CommonParameters>]

Detailed Description
This cmdlet collects configuration data for use when reporting problems to technical support. Because the
diagnostics are gathering several pieces of information, potentially across the network to themachine where you
are running the cmdlet, it may take several minutes to complete the information gathering and sending the
resulting zip file to the cmdlet machine.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost could be your source or target server.

true false

Output
Directory

String Specify the full path on themachine where you are running
the Get-DtDiagnostics cmdlet, to store the resulting zip file
containing the diagnostics information. The specified path
must already exist.

true false

Outputs
None

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Get-DtDiagnostics -ServiceHost $DtServerObjectAlpha "C:\Diagnostics"
Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then diagnostics are collected for the server and
stored in C:\Diagnostics. The connections for the server object are then closed.

Chapter 2 Cmdlets 37

Get-DtDnsOptions
Returns DNS options

Syntax
Get-DtDnsOptions [-ServiceHost] <Server> [-Source] <Server> [-JobType] <String> [-Workload] <Workload> [-
DnsCredentials] <PSCredential> [<CommonParameters>]

Detailed Description
This cmdlet returns DNS options available between the specified source and target servers.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.
For this cmdlet, the -ServiceHost should be your
target server.

true false

Source Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.

true false

JobType String This value is the job type name.

l Availability for Windows jobs
l FilesAndFolders—Files and folders
l ClusterAwareFilesAndFolders—
Cluster-aware files and folders

l SQL—SQL
l ClusterAwareSql—Cluster-aware
SQL

l FullServerFailover—Full server
l VRA—Full server to ESX or full
server to Hyper-V

l Availability for Linux jobs
l LinuxFilesAndFolders—Files and
folders

l LinuxFullServerFailover—Full
server

l Lvra—Full server to ESX
l Migrate for Windows jobs

l MoveDataOnlyMigration—Files
and folders migration

l MoveServerMigration—Full server
migration

true false

Chapter 2 Cmdlets 38

Name Type Description Required Pipeline
Input

l VraMove—Full server to
ESX migration or full server to
Hyper-V migration

l Migrate for Linux jobs
l LinuxMoveServerMigration—Full
server migration

l MoveLvra—Full server to ESX
migration

l Other jobs
l Diagnostics—Throughput
Diagnostic Utility

Workload Workload on
page 373

Specify the workload object returned from theGet-
DtWorkload cmdlet. SeeGet-DtWorkload on page
82.

true false

DnsCredentials PSCredential
on page 313

Specify the credential object returned from the
Windows PowerShell Get-Credential cmdlet. This
password will not be visible becauseWindows
stores an encrypted password. See Hiding your
password in a PowerShell script on page 485 for
basic details on using this cmdlet. See your
Windows PowerShell documentation for detailed
instructions.

true false

Outputs
DnsOptions on page 250

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha-WorkloadTypeName
FullServerFailover

$DtWorkload = Get-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGuid

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtCredentialEncrypted = Get-Credential

Get-DtDnsOptions -ServiceHost $DtServerObjectBeta -Source $DtServerObjectAlpha -JobType
FullServerFailover -Workload $DtWorkload -DnsCredentials $DtCredentialEncrypted

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The script then creates a workload on the server for

Chapter 2 Cmdlets 39

a full sever job, returning a global unique ID for the workload, and assigns that ID to the variable DtWorkloadGuid.
The workload definition for the workload type and the server is then stored in the DtWorkload variable. A server
object is created for the server beta using the domain\administrator and password credentials. It assigns the
server object to the variable called DtServerObjectBeta. User credentials are stored in a variable called
$DtCredential. The script will prompt you to supply the username and password and the credentials will be
encrypted. The DNS options for the two servers are then retrieved. The connections for the server object are then
closed.

Chapter 2 Cmdlets 40

Get-DtEmailNotificationOptions
Returns e-mail notification settings

Syntax
Get-DtEmailNotificationOptions [-ServiceHost] <Server> [<CommonParameters>]

Detailed Description
This cmdlet returns the current e-mail notification settings for the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost could be your source or target server.

true false

Outputs
EmailNotificationOptions on page 252

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Get-DtEmailNotificationOptions -ServiceHost $DtServerObjectAlpha
Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the current e-mail notification settings for that
server are returned. The connections for the server object are then closed.

Chapter 2 Cmdlets 41

Get-DtEventLogEntry
Returns a list of event log entries.

Syntax
Get-DtEventLogEntry [-ServiceHost] <Server> [-LastIndex <Int32>] [-ChunkSize <Int32>]
[<CommonParameters>]

Detailed Description
This cmdlet returns a list of Carbonite event log entries for the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost could be your source or target server.

true false

LastIndex Int32 Specify an index entry. The next index entry after the
number you specify will be the starting point for the log
entries returned. For example, if you specify 144 then the
first log entry retrieved will be index 145.

false false

ChunkSize Int32 Specify the number of entries that will be returned at one
time. The default number of entries is 1024.

false false

Outputs
EventLogEntry on page 256

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Get-DtEventLogEntry -ServiceHost $DtServerObjectAlpha -ChunkSize 25

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the Carbonite event entries are displayed, in
groups of 25. The connections for the server object are then closed.

Chapter 2 Cmdlets 42

Get-DtJob
Returns job information and status for the specified job on the specified server

Syntax
Get-DtJob [-ServiceHost] <Server> [[-JobId] <Guid>] [<CommonParameters>]

Detailed Description
Returns job information and status for the specified job on the specified server. To change the options of an
existing job, use Edit-DtJob on page 29.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob
cmdlet. See New-DtJob on page 100. Specify multiple
GUID objects in an array using the format @($JobGuid1,
$JobGuid2).

false false

Outputs
JobInfo [] on page 274

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadTypeName
FilesAndFolders

$DtWorkload = Get-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGuid

$DtJobOptions = Get-DtRecommendedJobOptions -ServiceHost $DtServerObjectBeta -Source
$DtServerObjectAlpha -JobType FilesAndFolders -Workload $DtWorkload

$DtFnFJobGuid = New-DtJob -ServiceHost $DtServerObjectBeta -Source $DtServerObjectAlpha -JobType
FilesAndFolders -JobOptions $DtJobOptions.JobOptions

$DtJobInfo = Get-DtJob -ServiceHost $DtServerObjectBeta -JobId $DtFnFJobGuid

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

Chapter 2 Cmdlets 43

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. A server object is created for the server beta using
the domain\administrator and password credentials. It assigns the server object to the variable called
DtServerObjectBeta. The script then creates a workload on the server for a files and folders job, returning a global
unique ID for the workload, and assigns that ID to the variable DtWorkloadGuid. The workload definition for the
workload type and the server is then stored in the DtWorkload variable. The recommended job options for the
servers and the workload type are then stored in the variable DtJobOptions. A new files and folders job is created
using the servers and the job options. The job ID is stored in the variable DtFnFJobGuid. Finally, the job
information for the job is stored in the variable DtJobInfo. The connections for the server object are then closed.

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobInfo = Get-DtJob -ServiceHost $DtServerObjectBeta

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. All job information for all of the jobs on the server beta
are stored in the variable DtJobInfo. This type of usage is commonwhen the jobs were created in the past or if you
did not store or do not know a job's ID. The connections for the server object are then closed.

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. This usage is
common for servers that havemore than one job, but you only want job information for one specific job. The
connections for the server object are then closed.

Chapter 2 Cmdlets 44

Get-DtJobActionStatus
Returns the status of a job action

Syntax
Get-DtJobActionStatus [-ServiceHost] <Server> [[-JobId] <Guid>] [<CommonParameters>]

Get-DtJobActionStatus [-ServiceHost] <Server> [-Action] <ActivityToken> [<CommonParameters>]

Detailed Description
This cmdlet returns the status of a job action that has been queued for job. The first syntax returns the status of all
of the actions queued for the specified job. The second syntax returns the status for the job action object
specified.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned from
theGet-DtJob cmdlet. See New-DtJob on page 100
andGet-DtJob on page 43.

false false

Action ActivityToken
on page 215

Specify a Carbonite job action object. true false

Outputs
ActivityStatusEntry on page 214

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Get-DtJobActionStatus -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id
Disconnect-DtServer -ServiceHost $DtServerObjectBeta

The job(s) are retrieved from DtServerObjectBeta, but only the job information where the sourcemachine name is
equivalent to the name stored in the variable DtServerObjectAlpha is retrieved. That information is then stored in
the variable DtJobForAlpha. A server object is created for the server beta using the domain\administrator and

Chapter 2 Cmdlets 45

password credentials. It assigns the server object to the variable called DtServerObjectBeta. Finally, the status of
the job action is returned. The connections for the server object are then closed.

Chapter 2 Cmdlets 46

Get-DtLatestFailoverReport
Returns the latest failover report

Syntax
Get-DtLatestFailoverReport [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Detailed Description
This cmdlet returns the latest failover report for the specified job.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

Outputs
FailoverReport on page 261

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobInfo = Get-DtJob -ServiceHost $DtServerObjectBeta

Get-DtLatestFailoverReport -ServiceHost $DtServerObjectBeta -JobId $DtJobInfo.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. All job information for all of the jobs on the server beta
are stored in the variable DtJobInfo. This type of usage is commonwhen the jobs were created in the past or if you
did not store or do not know a job's ID. The latest failover report for the job $DtJobInfo.Id is returned. The
connections for the server object are then closed.

Chapter 2 Cmdlets 47

Get-DtLogicalItem
Returns workload logical items

Syntax
Get-DtLogicalItem [-ServiceHost] <Server> [-WorkloadId] <Guid> [-RefItem <LogicalItem>]
[<CommonParameters>]

Detailed Description
This cmdlet returns the logical items associated with the specified workload.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your source
server.

true false

WorkloadId Guid on
page 271

Specify the workloadGUID returned from the New-
DtWorkload cmdlet using the workload type name
parameter. See New-DtWorkload on page 110.

true false

RefItem LogicalItems
on page 284

Specify an object returned from a previous Get-
DtLogicalItem call.

false false

Outputs
LogicalItems [] on page 284

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha-WorkloadTypeName
FullServerFailover

$DtLogicalItems = Get-DtLogicalItem -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGUID

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The script then creates a workload on the server for
a full sever job, returning a global unique ID for the workload, and assigns that ID to the variable DtWorkloadGuid.
The logical items associated with the workload type and the server are then stored in the variable DtLogicalItems.
The connections for the server object are then closed.

Chapter 2 Cmdlets 48

Get-DtLogMessage
Returns logmessages

Syntax
Get-DtLogMessage [-ServiceHost] <Server> [-Source <String>] [-LastSequenceNumber <Int32>] [-
LastTimeStamp <DateTimeOffset>] [-ChunkSize <Int32>] [<CommonParameters>]

Detailed Description
This cmdlet returns messages from the Double-Take service log file and the Double-TakeManagement Service
log file.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost could be your source or target server.

true false

Source String Specify source of the logmessage. If no source is
specified, both Double-TakeManagement Service
messages and Double-Take servicemessages will be
returned. To have only Double-TakeManagement Service
messages displayed, specify MS for the string value. To
have only Double-Take servicemessages displayed,
specify EN for the string value.

false false

Last
Sequenece
Number

Int32 Specify a sequence number to be the starting point to
retrieve the logmessages.

false false

LastTime
Stamp

DateTime
Offset

Specify a date and time stamp to be the starting point to
retrieve the logmessages. Specify the date in
mm/dd/yyyy format. Specify the time in hh:mm:ss format
with AM or PM. You can specify a time zone offset, for
example, -04:00. If you do not specify a time zone offset,
the time zone of themachine you are running from will be
used. If you do not specify a time, 12:00:00 AM will be
used.

false false

ChunkSize Int32 Specify the number of entries that will be returned at one
time. The default number of entries is 1024.

false false

Outputs
LogMessage [] on page 288

Chapter 2 Cmdlets 49

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Get-DtLogMessage -ServiceHost $DtServerObjectAlpha -sourceMS -LastTimeStamp "01/15/2019 05:19:00
PM" -ChunkSize 25

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the Double-TakeManagement Service log
messages after 5:19pm on January 15, 2019 are displayed in groups of 25. The connections for the server object
are then closed.

Chapter 2 Cmdlets 50

Get-DtOnlineActivationRequest
Returns the server information that is required to activate a license

Syntax
Get-DtOnlineActivationRequest [-ServiceHost] <Server> [<CommonParameters>]

Detailed Description
This cmdlet returns server information, unique to a specific, single server, that is required to activate a Carbonite
license. The server must already have a license key on the server in order to get the server information.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost could be your source or target server.

true false

Outputs
ServerActivationInformation on page 327

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Get-DtOnlineActivationRequest -ServiceHost $DtServerObjectAlpha

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The server information for the online activation
process is returned. The connections for the server object are then closed.

Chapter 2 Cmdlets 51

Get-DtOption
Returns job or server value

Syntax
Get-DtOption [-ServiceHost] <Server> [[-Name] <String[]>] [<CommonParameters>]

Detailed Description
This cmdlet returns the value of the specific job or server option from the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost could be your source or target server.

true false

Name String Specify the name of the job or server option. Specify
multiple strings in an array using the format @(string1,
string2). See Server and job settings on page 501 details
on job and server options.

false false

Outputs
Hashtable

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Get-DtOption -ServiceHost $DtServerObjectAlpha -NameMirrorChunkSize
Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the value of the server option called
MirrorChunkSize is returned from the server. The connections for the server object are then closed.

Chapter 2 Cmdlets 52

Get-DtPathBlocking
Returns the blocked paths

Syntax
Get-DtPathBlocking [-ServiceHost] <Server> [<CommonParameters>]

Detailed Description
This cmdlet returns the paths that are blocked on the specified target server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

Outputs
PathBlocking on page 302

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Get-DtPathBlocking -ServiceHost $DtServerObjectAlpha
Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the paths that are blocked on the server are
returned. The connections for the server object are then closed.

Chapter 2 Cmdlets 53

Get-DtPhysicalItem
Returns files system information

Syntax
This cmdlet returns file system information for the specified server. A physical item can be used to specify a
specific file, folder, or volume to return file system information for.

Detailed Description
Get-DtPhysicalItem [-ServiceHost] <Server> [-Ref <PhysicalItem>] [<CommonParameters>]

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost could be your source or
target server.

true false

Ref PhysicalItem
on page 304

Specify an object returned from a previous Get-
DtPhysicalItem call.

false false

Outputs
PhysicalItem [] on page 304

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtVolumes = Get-DtPhysicalItem -ServiceHost $DtServerObjectAlpha

$DtVolume1Root = Get-DtPhysicalItem -ServiceHost $DtServerObjectAlpha -Ref $DtVolumes[0]

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the volumes on the server are stored in the
variable DtVolumes. Finally, the files and folders at the root of the first volume in DtVolumes is stored in the
variable DtVolume1Root. The connections for the server object are then closed.

Chapter 2 Cmdlets 54

Get-DtProductInfo
Returns Carbonite product information

Syntax
Get-DtProductInfo [-ServiceHost] <Server> [<CommonParameters>]

Detailed Description
This cmdlet returns Carbonite product information for the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost could be your source or target server.

true false

Outputs
ProductInfo on page 310

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Get-DtProductInfo -ServiceHost $DtServerObjectAlpha
Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the Carbonite product information for the server
is returned. The connections for the server object are then closed.

Chapter 2 Cmdlets 55

Get-DtQualificationResults
Returns the qualification results

Syntax
Get-DtQualificationResults [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Get-DtQualificationResults [-ServiceHost] <Server> -JobInfo <JobInfo> [<CommonParameters>]

Detailed Description
This cmdlet returns the qualification results for the specified job type. Youmay want to use these results for job
options when editing a job.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

true false

Outputs
JobQualificationResults on page 280

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Get-DtQualificationResults -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id
Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable

Chapter 2 Cmdlets 56

DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The qualification
results for the job are then returned. The connections for the server object are then closed.

Chapter 2 Cmdlets 57

Get-DtRecommendedFailbackOptions
Returns the recommended failback options

Syntax
Get-DtRecommendedFailbackOptions [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Get-DtRecommendedFailbackOptions [-ServiceHost] <Server> -JobInfo <JobInfo> [<CommonParameters>]

Detailed Description
This cmdlet returns the recommended failback options for the specified job on the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

true false

Outputs
RecommendedFailbackOptions on page 314

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Get-DtRecommendedFailbackOptions -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id
Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. Then the

Chapter 2 Cmdlets 58

recommended failback options for the specified job and server are returned. The connections for the server object
are then closed.

Chapter 2 Cmdlets 59

Get-DtRecommendedFailoverOptions
Returns the recommended failover options

Syntax
Get-DtRecommendedFailoverOptions [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Get-DtRecommendedFailoverOptions [-ServiceHost] <Server> -JobInfo <JobInfo> [<CommonParameters

Detailed Description
This cmdlet returns the recommended failover options for the specified job on the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

false false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

false false

Outputs
RecommendedFailoverOptions on page 315

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Get-DtRecommendedFailoverOptions -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id
Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. Then the

Chapter 2 Cmdlets 60

recommended failover options for the specified job and server are returned. The connections for the server object
are then closed.

Chapter 2 Cmdlets 61

Get-DtRecommendedJobOptions
Returns recommended job options

Syntax
Get-DtRecommendedJobOptions [-ServiceHost] <Server> [-Source] <Server> [-JobType] <String> [-Workload]
<Workload> [-OtherServers <Server[]>] [<CommonParameters>]

Detailed Description
This cmdlet returns the recommended job options for the specified job type.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

Source Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103.

true false

JobType String This value is the job type name.

l Availability for Windows jobs
l FilesAndFolders—Files and folders
l ClusterAwareFilesAndFolders—Cluster-
aware files and folders

l SQL—SQL
l ClusterAwareSql—Cluster-aware SQL
l FullServerFailover—Full server
l VRA—Full server to ESX or full server to
Hyper-V

l Availability for Linux jobs
l LinuxFilesAndFolders—Files and folders
l LinuxFullServerFailover—Full server
l Lvra—Full server to ESX

l Migrate for Windows jobs
l MoveDataOnlyMigration—Files and
folders migration

l MoveServerMigration—Full server
migration

l VraMove—Full server to ESX migration or
full server to Hyper-V migration

l Migrate for Linux jobs

true false

Chapter 2 Cmdlets 62

Name Type Description Required Pipeline
Input

l LinuxMoveServerMigration—Full server
migration

l MoveLvra—Full server to ESX migration
l Other jobs

l Diagnostics—Throughput Diagnostic Utility

Workload Workload
on page
373

Specify the workload object returned from theGet-
DtWorkload cmdlet. SeeGet-DtWorkload on page 82.

true false

Other
Servers

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. Specify multiple
server objects in an array using the format @($server1,
$server2).

false false

Outputs
RecommendedJobOptions on page 316

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadTypeName
FilesAndFolders

$DtWorkload = Get-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGuid

$DtJobOptions = Get-DtRecommendedJobOptions -ServiceHost $DtServerObjectBeta -Source
$DtServerObjectAlpha -JobType FilesAndFolders -Workload $DtWorkload

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. A server object is created for the server beta using
the domain\administrator and password credentials. It assigns the server object to the variable called
DtServerObjectBeta. The script then creates a workload on the server for a files and folders job, returning a global
unique ID for the workload, and assigns that ID to the variable DtWorkloadGuid. The workload definition for the
workload type and the server is then stored in the DtWorkload variable. The recommended job options for the
servers and the workload type are then stored in the variable DtJobOptions. The connections for the server object
are then closed.

Chapter 2 Cmdlets 63

Get-DtRecommendedPathTransform
Returns the recommendedmappings

Syntax
This cmdlet returns the recommendedmapping between the location of the data on the source and the location of
the replica data on the target for the specific type of workload .

Detailed Description
Get-DtRecommendedPathTransform [-ServiceHost] <Server> [-WorkloadId] <Guid> [-BasePath <String>]
[<CommonParameters>]

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your source server.

true false

WorkloadId Guid on
page 271

Specify the workloadGUID returned from the New-
DtWorkload cmdlet using the workload type name
parameter. See New-DtWorkload on page 110.

true false

BasePath String Specify the location on the target where the replica of the
source data will be stored. By default, the replica source
data will be stored in the same directory structure on the
target, in a one-to-one configuration.

false false

Outputs
PathTransformation [] on page 303

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha-WorkloadTypeName
FullServerFailover

Get-DtRecommendedPathTransform -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGuid
Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The script then creates a workload on the server for
a full sever job, returning a global unique ID for the workload, and assigns that ID to the variable DtWorkloadGuid.
The recommendedmapping of the data on the source and the replica data on the target is then returned. The
connections for the server object are then closed.

Chapter 2 Cmdlets 64

Get-DtRecommendedRestoreOptions
Returns the recommended restoration options

Syntax
Get-DtRecommendedRestoreOptions [-ServiceHost] <Server> [-JobId] <Guid> [-RestoreTarget <Server>] [-
RequestCanClearRestoreRequired] [<CommonParameters>]

Get-DtRecommendedRestoreOptions [-ServiceHost] <Server> -JobInfo <JobInfo> [-RestoreTarget <Server>] [-
RequestCanClearRestoreRequired] [<CommonParameters>]

Detailed Description
Returns the recommended restoration options for the specified job on the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

Restore
Target

Server on
page 325

Specify the server you want to restore to. If you do not
specify a server, the original source server will be used.

false false

Request
CanClear
Restore
Required

Switch
Parameter

Sets
RecommendedRestoreOptions.CanClearRestoreRequired
on the RecommendedRestoreOptions object based on
whether it is supported by the current job state. You still
need to set ClearRestoreRequired on RestoreOptions to
clear the restore required state of a job.

false false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

true false

Outputs
RecommendedRestoreOptions on page 317

Chapter 2 Cmdlets 65

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Get-DtRecommendedRestoreOptions -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -
RestoreTarget $DtServerObjectAlpha
Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. A server object is created for the server beta using
the domain\administrator and password credentials. It assigns the server object to the variable called
DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but only the job information where the
sourcemachine name is equivalent to the name stored in the variable DtServerObjectAlpha is retrieved. That
information is then stored in the variable DtJobForAlpha. Then the recommended restore options for the specified
job and server are returned. The connections for the server object are then closed.

If you want to clear the restore required flag, save your recommended restore options to a variable and then set
ClearRestoreRequired to true.

$DtRecommendedRestoreOptions = Get-DtRecommendedRestoreOptions -ServiceHost
$DtServerObjectBeta -JobId $DtJobForAlpha.Id -RestoreTarget $DtServerObjectAlpha -
RequestCanClearRestoreRequired

$DtRestoreOptions = $DtRecommendedRestoreOptions.RestoreOptions

$DtRestoeOptions.ClearRestoreRequired = $true;

Chapter 2 Cmdlets 66

Get-DtRepairJobOptionsStatus
Returns the details and status of a repair

Syntax
Get-DtRepairJobOptionsStatus [-ServiceHost] <Server> [-Token] <ActivityToken> [<CommonParameters>]

Detailed Description
This cmdlet returns the details and status of the repair performed by the Repair-DtJobOptions cmdlet. See Repair-
DtJobOptions on page 120.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

Token ActivityToken
on page 215

Specify the repair action object returned from the
Repair-DtJobOptions cmdlet. See Repair-
DtJobOptions on page 120.

true false

Outputs
RepairStatus on page 318

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

$DtValidation = Confirm-DtJobOptions -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -
JobOptions $DtJob.Options

$DtStatus = Get-DtVerificationStatus -ServiceHost $DtServerObjectBeta -Token $DtValidation

$DtRepair = Repair-DtJobOptions -ServiceHost $DtTarget -JobId $DtJob.Id -JobOptions $DtJob.Options -
Step $DtStatus.Steps

$DtRepairStatus = Get-DtRepairJobOptionsStatus -ServiceHost $DtServerObjectBeta -Token $DtRepair

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The job options

Chapter 2 Cmdlets 67

used by the job are confirmed, and the validation result is stored in DtValidation. The details of the validation are
stored in the variable DtStatus. Ideally you should script this with a loop so you can wait until the verification
status is complete before continuing with your script. Those items that can automatically be fixed are corrected. If
the job options weremodified in order to fix an issues, the updated job options are now contained in the variable
$DtRepair. The details and status of the repair are stored in the variable DtRepairStatus. The connections for the
server object are then closed.

Chapter 2 Cmdlets 68

Get-DtScriptCredentials
Returns credentials

Syntax
Get-DtScriptCredentials [-ServiceHost] <Server> [<CommonParameters>]

Detailed Description
This cmdlet returns the credentials that Carbonite is currently using to run scripts on the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost could be your source or target server.

true false

Outputs
None

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Get-DtScriptCredentials -ServiceHost $DtServerObjectAlpha
Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the credentials that Carbonite is using to run
scripts on this server are returned. The connections for the server object are then closed.

Chapter 2 Cmdlets 69

Get-DtServerInfo
Returns server information

Syntax
Get-DtServerInfo [-ServiceHost] <Server> [<CommonParameters>]

Detailed Description
This cmdlet returns server configuration information for the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost could be your source or target server.

true false

Outputs
ServerInfo on page 328

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Get-DtServerInfo -ServiceHost $DtServerObjectAlpha
Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then server configuration information for the server
is returned. The connections for the server object are then closed.

Chapter 2 Cmdlets 70

Get-DtSnapshot

Returns snapshots

Syntax
Get-DtSnapshot [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Get-DtSnapshot [-ServiceHost] <Server> -JobInfo <JobInfo> [<CommonParameters>]

Detailed Description
This cmdlet returns the available Carbonite snapshots for the specified job .

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

true true

Outputs
SnapshotEntry on page 335

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Get-DtSnapshot -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id
Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable

Chapter 2 Cmdlets 71

DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The snapshots
available for the job are returned. The connections for the server object are then closed.

Chapter 2 Cmdlets 72

Get-DtSourceQueueSnapshot
Gets a coordinated snapshot

Syntax
Get-DtSourceQueueSnapshot [-ServiceHost] <Server> [-CorrelationId] <Guid> [-JobId] <Guid>
[<CommonParameters>]

Detailed Description
This cmdlet gets a coordinated snapshot for one job.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

CorrelationID Guid Specify the correlation ID used to create the
coordinated snapshot. See Checkpoint-
DtConnectionSourceQueue on page 22.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned from
theGet-DtJob cmdlet. See New-DtJob on page 100 and
Get-DtJob on page 43.

true false

Outputs
SourceQueueSnapshotEntry on page 339

Examples

$CorId=New-Guid

$Source1Uri = "dtms://112.42.7.63:6325/"

$Source2Uri = "dtms://112.42.7.71:6325/"

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJob1 = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object { $_.SourceHostUri -eq $Source1Uri}

$DtJob2 = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object { $_.SourceHostUri -eq $Source2Uri}

$DtJobsArray = New-Object "System.Collections.Generic.List[Guid]"

$DtJobsArray.Clear()

Chapter 2 Cmdlets 73

$DtJobsArray.Add($DtJob1.Id)

$DtJobsArray.Add($DtJob2.Id)

Checkpoint-DtConnectionSourceQueue -ServiceHost $DtServerObjectBeta -CorrelationId $CorId -JobIds
$DtJobsArray.ToArray()

Get-DtSourceQueueSnapshot -ServiceHost $DtServerObjectBeta -CorrelationId $CorId -JobIds $DtJob1.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

Several variables are set including a unique correlation ID for the snapshots that will be taken as well as URI
identifiers for the source servers of existing jobs. A server object is created for the server beta using the
domain\administrator and password credentials. It assigns the server object to the variable called
DtServerObjectBeta. The jobs are retrieved from DtServerObjectBeta, and the job information is inserted into
unique variables. And array of job IDs is then created. A coordinated snapshot is taken using the specified
correlation ID and the jobs stored in the array. Only those jobs will have coordinated snapshots. Then the
coordinated snapshot for the specified correlation ID and job ID is returned. The connections for the server object
are then closed.

Chapter 2 Cmdlets 74

Get-DtSourceQueueSnapshots
Gets all coordinated snapshots

Syntax
Get-DtSourceQueueSnapshot [-ServiceHost] <Server> [-CorrelationId] <Guid> [<CommonParameters>]

Detailed Description
This cmdlet gets all coordinated snapshot for one correlation ID.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

CorrelationID Guid Specify the correlation ID used to create the
coordinated snapshot. See Checkpoint-
DtConnectionSourceQueue on page 22.

true false

Outputs
SourceQueueSnapshotEntry on page 339 []

Examples

$CorId=New-Guid

$Source1Uri = "dtms://112.42.7.63:6325/"

$Source2Uri = "dtms://112.42.7.71:6325/"

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJob1 = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object { $_.SourceHostUri -eq $Source1Uri}

$DtJob2 = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object { $_.SourceHostUri -eq $Source2Uri}

$DtJobsArray = New-Object "System.Collections.Generic.List[Guid]"

$DtJobsArray.Clear()

$DtJobsArray.Add($DtJob1.Id)

$DtJobsArray.Add($DtJob2.Id)

Checkpoint-DtConnectionSourceQueue -ServiceHost $DtServerObjectBeta -CorrelationId $CorId -JobIds
$DtJobsArray.ToArray()

Chapter 2 Cmdlets 75

Get-DtSourceQueueSnapshots -ServiceHost $DtServerObjectBeta -CorrelationId $CorId

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

Several variables are set including a unique correlation ID for the snapshots that will be taken as well as URI
identifiers for the source servers of existing jobs. A server object is created for the server beta using the
domain\administrator and password credentials. It assigns the server object to the variable called
DtServerObjectBeta. The jobs are retrieved from DtServerObjectBeta, and the job information is inserted into
unique variables. And array of job IDs is then created. A coordinated snapshot is taken using the specified
correlation ID and the jobs stored in the array. Only those jobs will have coordinated snapshots. Then the
coordinated snapshots for the specified correlation ID are returned. The connections for the server object are then
closed.

Chapter 2 Cmdlets 76

Get-DtUvraRecommendedFailoverOptions
Returns the recommended failover options

Syntax
Get-DtUvraRecommendedFailoverOptions [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Get-DtUvraRecommendedFailoverOptions [-ServiceHost] <Server> -JobInfo <JobInfo>
[<CommonParameters>]

Detailed Description
This cmdlet returns the recommended failover options for the specified full server to ESX appliance job on the
specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtUvraServer cmdlet. See New-DtUvraServer on page
108. For this cmdlet, the -ServiceHost should be your
target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

false false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

false false

Outputs
FailoverOptions on page 260

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName root -Password password

$DtApplianceObject = New-DtUvraServer -Name beta -UserName root -Password password -Port 6325

$DtJobForAlpha = Get-DtJob -ServiceHost $DtApplianceObject | Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Get-DtUvraRecommendedFailoverOptions -ServiceHost $DtApplianceObject -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtApplianceObject

Chapter 2 Cmdlets 77

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the root and password credentials. It assigns the server object
to the variable called DtServerObjectAlpha. A server object is created for the appliance beta using port 6325 and
the root and password credentials. It assigns the server object to the variable called DtApplianceObject. The job
(s) are retrieved from DtApplianceObject, but only the job information where the sourcemachine name is
equivalent to the name stored in the variable DtServerObjectAlpha is retrieved. That information is then stored in
the variable DtJobForAlpha. Then the recommended failover options for the specified full server to ESX appliance
job and server are returned. The connections for the server object are then closed.

Chapter 2 Cmdlets 78

Get-DtUvraRecommendedRemoveOptions
Returns recommended removal options

Syntax
Get-DtUvraRecommendedRemoveOptions [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Get-DtUvraRecommendedRemoveOptions [-ServiceHost] <Server> -JobInfo <JobInfo>
[<CommonParameters>]

Detailed Description
This cmdlet returns the recommended removal options when deleting the specified full server to ESX appliance
job.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtUvraServer cmdlet. See New-DtUvraServer on page
108. For this cmdlet, the -ServiceHost should be your
target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

false false

Outputs
DeleteOptions on page 245

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName root -Password password

$DtApplianceObject = New-DtUvraServer -Name beta -UserName root -Password password -Port 6325

$DtJobForAlpha = Get-DtJob -ServiceHost $DtApplianceObject | Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Get-DtUvraRecommendedRemoveOptions -ServiceHost $DtApplianceObject -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtApplianceObject

Chapter 2 Cmdlets 79

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the root and password credentials. It assigns the server object
to the variable called DtServerObjectAlpha. A server object is created for the appliance beta using port 6325 and
the root and password credentials. It assigns the server object to the variable called DtApplianceObject. The job
(s) are retrieved from DtApplianceObject, but only the job information where the sourcemachine name is
equivalent to the name stored in the variable DtServerObjectAlpha is retrieved. That information is then stored in
the variable DtJobForAlpha. Then the recommended remove options for the specified full server to ESX appliance
job and server are returned. The connections for the server object are then closed.

Chapter 2 Cmdlets 80

Get-DtVerificationStatus
Returns the validation details and status

Syntax
Get-DtVerificationStatus [-ServiceHost] <Server> [-Token] <ActivityToken> [<CommonParameters>]

Detailed Description
This cmdlet returns the details and status of the validation performed by the Confirm-DtJobOptions cmdlet. See
Confirm-DtJobOptions on page 25. Do not confuse this process with the verification process that confirms if the
data between the source and target are synchronized.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

Token ActivityToken
on page 215

Specify the confirm action object returned from the
Confirm-DtJobOption cmdlet. See Confirm-
DtJobOptions on page 25.

true false

Outputs
VerificationStatus on page 353

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

$DtValidation = Confirm-DtJobOptions -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -
JobOptions $DtJob.Options

$DtStatus = Get-DtVerificationStatus -ServiceHost $DtServerObjectBeta -Token $DtValidation

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The job options
used by the job are confirmed, and the validation result is stored in DtValidation. The details of the validation are
stored in the variable DtStatus. Ideally you should script this with a loop so you can wait until the verification
status is complete before continuing with your script. The connections for the server object are then closed.

Chapter 2 Cmdlets 81

Get-DtWorkload
Returns the workload definition

Syntax
Get-DtWorkload [-ServiceHost] <Server> [-WorkloadId] <Guid> [<CommonParameters>]

Detailed Description
This cmdlet returns an object that represents the workload definition, including the workload type name, any
physical rules, and any logical rules. This object is used in job cmdlets.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your source server.

true false

WorkloadId Guid on
page 271

Specify the workloadGUID returned from the New-
DtWorkload cmdlet using the workload type name
parameter. See New-DtWorkload on page 110.

true false

Outputs
Workload on page 373

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha-WorkloadTypeName
FullServerFailover

$DtWorkload = Get-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGuid

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The script then creates a workload on the server for
a full sever job, returning a global unique ID for the workload, and assigns that ID to the variable DtWorkloadGuid.
The workload definition for the workload type and the server is then stored in the DtWorkload variable. The
connections for the server object are then closed.

Chapter 2 Cmdlets 82

Get-DtWorkloadPhysicalItem
Returns physical items

Syntax
Get-DtWorkloadPhysicalItem [-ServiceHost] <Server> [-WorkloadId] <Guid> [-RefItem <PhysicalItem>]
[<CommonParameters>]

Detailed Description
This cmdlet returns the physical items available for the specified workload on the specified server

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your source
server.

true false

WorkloadId Guid on page
271

Specify the workloadGUID returned from the New-
DtWorkload cmdlet using the workload type name
parameter. See New-DtWorkload on page 110.

true false

Ref PhysicalItem
on page 304

Specify an object returned from a previous Get-
DtWorkloadPhysicalItem call.

false false

Outputs
PhysicalItem on page 304

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadTypeName
FilesAndFolders

Get-DtWorkloadPhysicalItem -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGuid
Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The script then creates a workload on the server for
a files and folders job, returning a global unique ID for the workload, and assigns that ID to the variable
DtWorkloadGuid. Finally, the physical items available for the workload on the server are returned. The
connections for the server object are then closed.

Chapter 2 Cmdlets 83

Get-DtWorkloadType
Returns the workload types

Syntax
Get-DtWorkloadType [-ServiceHost] <Server> [<CommonParameters>]

Detailed Description
This cmdlet returns the types of workloads that are supported on the specified server. The supported workload
types are based on the Carbonite license keys on the server, the applications on the server, the server
configuration (like standalone or cluster), and so on.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your source server.

true false

Outputs
WorkloadType [] on page 376

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Get-DtWorkloadType -ServiceHost $DtServerObjectAlpha

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then it returns the workload types that are supported
on the server. The connections for the server object are then closed.

Chapter 2 Cmdlets 84

Install-DoubleTake
Installs Carbonite

Syntax
Install-DoubleTake [-RemoteServer] <Server> -ActivationCode <String[]> [-DiskQueueFolder <String>] [-
DiskQueueLimit <Int32>] [-DotNetPackagePath <String>] [-InstallationFolder <String>] [-MaxMemoryUsage
<Int32>] [-MinFreeDiskSpace <Int32>] [-PackageBaseFolder <String>] [-SimultaneousFilePushLimit <Int32>] [-
TempFolder <String>] [-X64PackageFolder <String>] [-X86PackageFolder <String>] [-LinuxPackageFolder
<String>] [-AsJob] [<CommonParameters>]

Install-DoubleTake [-RemoteServer] <Server> -ActivationCode <String[]> -Schedule <DateTime> [-
DiskQueueFolder <String>] [-DiskQueueLimit <Int32>] [-DotNetPackagePath <String>] [-InstallationFolder
<String>] [-MaxMemoryUsage <Int32>] [-MinFreeDiskSpace <Int32>] [-NoReboot] [-PackageBaseFolder
<String>] [-SimultaneousFilePushLimit <Int32>] [-TempFolder <String>] [-X64PackageFolder <String>] [-
X86PackageFolder <String>] [-AsJob] [<CommonParameters>]

Detailed Description
This cmdlet installs Carbonite on the specified server. The first syntax allows you to install Carbonite
immediately. The second syntax allows you to schedule the installation.

Parameters

Name Type Description Required Pipeline
Input

Remote
Server

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.

true false

Activation
Code

String You have the following options.

l Use this parameter and enter a key—If you
use this parameter, you can specify a 24-
character, alpha-numeric license key which
applies the appropriate Carbonite license to your
Carbonite server. If there is an existing key, it
will be overwritten. Specify multiple keys in an
array using the format @(code1, code2).

l Use this parameter and enter None—If you
use this parameter, you can specify the keyword
None. If there is an existing key, it will be
removed and no key written.

l Do not use this parameter—if you do not use
this parameter, existing keys will bemaintained
as is.

false false

DiskQueue
Folder

String Specify the location where you want to store the
Carbonite disk queue on each server. The default is
\Program Files\Carbonite\Replication.

false false

Chapter 2 Cmdlets 85

Name Type Description Required Pipeline
Input

DiskQueue
Limit

Int32 Specify a fixed amount of disk space, in MB, in the
specified DiskQueueFolder that can be used for
Carbonite disk queuing. When the disk space limit is
reached, Carbonite will automatically begin the auto-
disconnect process. By default, an unlimited amount of
disk queuing will be allowed.

false false

DotNet
Package
Path

String If your servers do not haveMicrosoft .NET version
4.5.1, specify the location of the setup file (on the local
machine) that will be used to install it. This option is for
older versions of Windows. Generally, newer versions
of Windows will have .NET already installed.

false false

Installation
Folder

String Specify the location where you want to install Carbonite
on the server. The default is \Program
Files\Carbonite\Replication.

false false

Max
Memory
Usage

Int32 Specify themaximum amount of memory, in MB, that
can be used for Carbonite processing. The default will
depend on your operating system and hardware. For
complete details onmemory usage, see theUser's
Guide.

false false

MinFree
DiskSpace

Int32 This is theminimum amount of disk space in the
specified DiskQueueFolder that must be available at all
times. This amount should be less than the amount of
physical disk spaceminus the disk size specified for
DiskQueueLimit. The default is 50MB.

false false

Package
Base
Folder

String Specifies the locations of the setup files (on the local
machine or a UNC path) that will be used to install on
both 32-bit and 64-bit servers. By default, these are in
the i386\ and \x64 subdirectories where you installed
Carbonite.

false false

Simultaneous
FilePush
Limit

Int32 Specify the number of files that can simultaneously be
pushed to themachine you are installing on. The default
is 5.

false false

Temp
Folder

String Specify a temporary location (on the server where you
are installing Carbonite) where the installation files will
be copied and run. The default is \Temp. You need
approximately 130MB of space in the specified
location.

false false

X64
Package
Folder

String Specify the location of the setup file (on the local
machine or a UNC path) that will be used to install on
64-bit Windows servers. By default, this is in the \x64
subdirectory where you installed Carbonite.

false false

Chapter 2 Cmdlets 86

Name Type Description Required Pipeline
Input

X86
Package
Folder

String Specify the location of the setup file (on the local
machine or a UNC path) that will be used to install on
32-bit Windows servers. By default, this is in the \i386
subdirectory where you installed Carbonite.

false false

Linux
Package
Folder

String Specify the location of the .rpm or .deb installation files
(on the local machine or a UNC path) that will be used
to install on Linux servers.

false false

AsJob Switch
Parameter

Specify if you want the installation to occur
asynchronously in the background, returning the
PowerShell command immediately. You can get the
status of each installation using theWindows
PowerShell Get-Job command. Without this parameter,
each push installation specified will be executed
synchronously and the current activity of the current
installation will be displayed.

false false

Schedule DateTime Specify a date and time to complete the installation.
Specify the date in mm/dd/yyyy format. Specify the
time in hh:mm:ss format with AM or PM. You can
specify a time zone offset, for example, -04:00. If you
do not specify a time zone offset, the time zone of the
machine you are running from will be used. If you do not
specify a time, 12:00:00 AM will be used.

true false

NoReboot Switch
Parameter

Specify if you do not want the server to reboot after the
installation, even if a reboot is required.

false false

Outputs
None

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Install-DoubleTake -RemoteServer $DtServerObjectAlpha -ActivationCode 1234567890abcdefghij1234 -
x64PackageFolder "C:\Program Files\Carbonite\Replication\x64"

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then Carbonite is installed to the server using the
license key 1234567890abcdefghij1234, using the setup.exe installation file stored locally at C:\Program
Files\Carbonite\Replication\x64. The connections for the server object are then closed.

Chapter 2 Cmdlets 87

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Install-DoubleTake -RemoteServer $DtServerObjectAlpha -ActivationCode 1234567890abcdefghij1234 -
LinuxPackageFolder "C:\Program Files\Carbonite\Replication\Linux"

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then Carbonite is installed to the server using the
license key 1234567890abcdefghij1234, using the .rpm or .deb installation files stored locally at C:\Program
Files\Carbonite\Replication\Linux. The connections for the server object are then closed.

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Install-DoubleTake -RemoteServer $DtServerObjectAlpha -ActivationCode 1234567890abcdefghij1234 -
LinuxPackageFolder "\\DTAppliance\installers"

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then Carbonite is installed to the server using the
license key 1234567890abcdefghij1234, using the .rpm or .deb installation files stored on a deployed Carbonite
Linux appliance at \\DTAppliance\installers. The connections for the server object are then closed.

Chapter 2 Cmdlets 88

Install-DtVmwareCertificate
Installs VMware security certificate

Syntax
Install-DtVmwareCertificate [-ServiceHost] <Server> [-Certificate] <X509Certificate> [<CommonParameters>]

Detailed Description
This cmdlet installs the specified X.509 security certificate on the specified server

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

Certificate $Variable
[1]

The certificate from the Test-DtVmwareCertificatePolicy
on page 192 false returnmust be installed. The certificate
is the second item in the returned array.

true false

Outputs
None

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$TestResult = Test-DtVmwareCertificatePolicy -ServiceHost $DtServerObjectBeta -VmwareServer
112.47.15.6

Set-DtVmwareCertificatePolicy -ServiceHost $DtServerObjectBeta -VmwareServer 112.47.15.6 -Policy
AllowAll

Install-DtVmwareCertificate -ServiceHost $DtServerObjectBeta -Certificate $TestResult[1]

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The server $DTServerObjectBeta is tested to see if
the current policy or any valid certificates will allow a connection to the specified VMware server. In this example,
assume the return is false. The VMware certificate policy on the server $DTServerObjectBeta is then set to allow
all certificates to be installed. The certificate from the Test-DtVmwareCertificatePolicy false return is then
installed on the server $DTServerObjectBeta. The connections for the server object are then closed.

Chapter 2 Cmdlets 89

Invoke-DtAddShares
Adds shares to the target

Syntax
Invoke-DtAddShares [-ServiceHost] <Server> [-JobXmlPath] <String> [[-SharePathFilter] <String>]
[<CommonParameters>]

Detailed Description
This cmdlet takes the drive share configuration that was gathered during Carbonite mirroring and replication and
applies it to the target server. This process is independent of the failover process.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobXml
Path

String Specify the path and file name to the Carbonite .xml
configuration file for the job that contains the protected
shares. By default, this location is \Program
Files\Carbonite\Replication\Service\Data. The file name
will be JobGuid.xml where Guid is the unique identifier
assigned to the job. You can find this ID by using Get-
DtJob on page 43.

true false

SharePath
Filter

String Creates shares from the specified path and any
subdirectories of this path

false false

Outputs
None

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobInfo = Get-DtJob -ServiceHost $DtServerObjectBeta

$JobId = $DtJobInfo.Id

$PathToJobFile = "C:\Program Files\Carbonite\Replication\Service\Data\"

$JobFileExtension = ".xml"

$JobFile = $PathToJobFile + "Job" + $JobId + $JobFileExtension

Invoke-DtAddShares –ServiceHost $DtServerObjectBeta –JobXmlPath $JobFile

Chapter 2 Cmdlets 90

Disconnect-DtServer –ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. All job information for all of the jobs on the server beta
are stored in the variable DtJobInfo. This type of usage is commonwhen the jobs were created in the past or if you
did not store or do not know a job's ID. In this example, assume there is only one job on the server. SeeGet-DtJob
on page 43 for examples on how to get specific job information when there aremultiple jobs on one server. Job id
from the stored job information is stored in the variable JobId. The path to the location of the job file is stored in the
variable PathToJobFile. The extension of the job file is stored in the variable JobFileExtension. The variables are
appended, together with the word Job, to create the variable JobFile. For example, the JobFile variable might end
up being C:\Program Files\Carbonite\Replication\Service\Data\Job87667a0d-4516-4182-ab8f-13f6fd15dd92.xml.
Shares are then added on the server DtServerObjectBeta using the job configuration file stored in JobFile. The
connections for the server object are then closed.

Chapter 2 Cmdlets 91

Invoke-DtQueueTask
Queues tasks

Syntax
Invoke-DtQueueTask [-ServiceHost] <Server> [-JobId] <Guid> [-OnQueue <TaskParameters>] [-OnTransmit
<TaskParameters>] [-OnReceive <TaskParameters>] [-OnExecute <TaskParameters>] [-InteractWithDesktop]
[-Timeout <TimeSpan>] [-ConnectionId <Guid>] [<CommonParameters>]

Invoke-DtQueueTask [-ServiceHost] <Server> -JobInfo <JobInfo> [-OnQueue <TaskParameters>] [-OnTransmit
<TaskParameters>] [-OnReceive <TaskParameters>] [-OnExecute <TaskParameters>] [-InteractWithDesktop]
[-Timeout <TimeSpan>] [-ConnectionId <Guid>] [<CommonParameters>]

Detailed Description
This cmdlet queues tasks inline with replication data. Keep the following inmind when using this cmdlet.

l Any combination of one or more execution points can be used with the same Invoke-DtQueueTask cmdlet.
l All script processingmessages, including errors, can be viewed in the Carbonite log and theWindows
Event log.

l If your source is in a restore required state (after a failover), any task placed on the queue will be executed
immediately. Use caution when submitting tasks while in this state so that the target does not get
inadvertently updated.

l If a task is submitted after replication is stopped, the task will be executed immediately.
l A task may be discarded if all jobs to a target aremanually stopped, if replication is stopped to a target, or if
an auto-disconnect occurs.

l If you disable task command processing while tasks are in queue, those tasks will not be executed.
l The user submitting the task commandmust be amember of the Double-Take Admin security group on
both the source and target and the Double-Take servicemust have proper privileges to access the files or
run the commands specified in the task.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on page
325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.
For this cmdlet, the -ServiceHost should be your
target server.

true false

JobId Guid on page 271 Specify the job GUID returned from the New-
DtJob cmdlet or the Id within the job information
returned from theGet-DtJob cmdlet. See New-
DtJob on page 100 andGet-DtJob on page 43.

true false

OnQueue TaskParameters
on page 347

Execute the specified task on the sourcemachine
as soon as the source receives and queues the

false false

Chapter 2 Cmdlets 92

Name Type Description Required Pipeline
Input

task. During heavy replication, theremay be a
delay while the task is queued inline with the
replication operations. Define the task parameters
by using New-DtTaskParameters on page 105.

OnTransmit TaskParameters
on page 347

Execute the specified task on the sourcemachine
just before the source transmits the task to the
target. Define the task parameters by using New-
DtTaskParameters on page 105.

false false

OnReceive TaskParameters
on page 347

Execute the specified task on the target machine
as soon as the target receives and queues the
task. Define the task parameters by using New-
DtTaskParameters on page 105.

false false

OnExecute TaskParameters
on page 347

Execute the specified task on the target when the
target processes the task from the queue. Since
the task is not executed until it is processed, if the
target is paused, the task will be held in queue.
Define the task parameters by using New-
DtTaskParameters on page 105.

false false

Interact
With
Desktop

SwitchParameter Tasks interact with the desktop and, therefore,
display on screen and run in the foreground. If you
do not use this option, tasks do not interact with
the desktop and will be run in the background.

false false

Timeout TimeSpan Specify the length of time, in timespan format, to
wait for tasks to complete. For example,
0.01:30:00 would wait for one hour and thirty
minutes. If you set the timespan to zero
(0.00:00:00), there is no timeout delay and the next
operation is immediately processed. If you do not
specify a timeout parameter, the timeout will
default to forever.

false false

Connection
Id

ConnectionId on
page 230

Specify the connection ID returned from theGet-
DtConnectionIds cmdlet. SeeGet-
DtConnectionIds on page 36.

false false

JobInfo JobInfo on page
274

Specify the job information returned from theGet-
DtJob cmdlet. The job information can be piped
from theGet-DtJob cmdlet and used in this
cmdlet. SeeGet-DtJob on page 43.

true true

Outputs
ActivityToken on page 215

Chapter 2 Cmdlets 93

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

$DtScript = New-DtTaskParameters -ScriptPath "C:\PathDir\ScriptName" -Arguments "arg1 arg2"

$DtPsScript = New-DtTaskParameters -ScriptPath
"C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe" -Arguments "-File
""C:\PathDir\Script.ps1"" ""-Arg1 argument1_info -Arg2 argument2_info"" -ExecutionPolicy RemoteSigned"

Invoke-DtQueueTask -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -OnReceive $DtScript -
OnExecute $DtPsScript

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The script called
ScriptName, located in C:\PathDir, along with two arguments, is stored in the variable DtScript. The script to
launch PowerShell and run the script called Script.ps1, located in C:\PathDir, along with two arguments and the
ExecutionPolicy parameter, is stored in the variable DtPsScript. Finally, the script stored in DtScript is executed
when the target receives and queues the task and the script stored in DtPsScript is executed when the target
processes the task from the queue. The connections for the server object are then closed.

Chapter 2 Cmdlets 94

Invoke-DtRemoveShares
Removes shares from the target

Syntax
Invoke-DtRemoveShares [-ServiceHost] <Server> [-JobXmlPath] <String> [[-SharePathFilter] <String>]
[<CommonParameters>]

Detailed Description
This cmdlet takes the drive share configuration that was gathered during Carbonite mirroring and replication and
removes it from the target server. This process is independent of the failback process.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobXml
Path

String Specify the path and file name to the Carbonite .xml
configuration file for the job that contains the protected
shares. By default, this location is \Program
Files\Carbonite\Replication\Service\Data. The file name
will be JobGuid.xml where Guid is the unique identifier
assigned to the job. You can find this ID by using Get-
DtJob on page 43.

true false

SharePath
Filter

String Removes shares from the specified path and any
subdirectories of this path

false false

Outputs
None

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobInfo = Get-DtJob -ServiceHost $DtServerObjectBeta

$JobId = DtJobInfo.Id

$PathToJobFile = "C:\Program Files\Carbonite\Replication\Service\Data\"

$JobFileExtension = ".xml"

$JobFile = $PathToJobFile + "Job" + $JobId + JobFileExtension

Invoke-DtRemoveShares –ServiceHost $DtServerObjectBeta –JobXmlPath $JobFile

Disconnect-DtServer – ServiceHost $DtServerObjectBeta

Chapter 2 Cmdlets 95

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. All job information for all of the jobs on the server beta
are stored in the variable DtJobInfo. This type of usage is commonwhen the jobs were created in the past or if you
did not store or do not know a job's ID. In this example, assume there is only one job on the server. SeeGet-DtJob
on page 43 for examples on how to get specific job information when there aremultiple jobs on one server. Job id
from the stored job information is stored in the variable JobId. The path to the location of the job file is stored in the
variable PathToJobFile. The extension of the job file is stored in the variable JobFileExtension. The variables are
appended, together with the word Job, to create the variable JobFile. For example, the JobFile variable might end
up being C:\Program Files\Carbonite\Replication\Service\Data\Job87667a0d-4516-4182-ab8f-13f6fd15dd92.xml.
Shares are then removed on the server DtServerObjectBeta using the job configuration file stored in JobFile. The
connections for the server object are then closed.

Chapter 2 Cmdlets 96

Merge-DtConsoleServerData
Applies Carbonite Replication Console server data from a file

Syntax
Merge-DtConsoleServerData [-ImportFilePath] <String> [-Replace] [<CommonParameters>]

Detailed Description
This cmdlet applies the server information from a server data file generated from the Save-DtConsoleServerData
cmdlet. See Save-DtConsoleServerData on page 133. The server information from the file will be applied to the
user profile of the user that is currently logged into themachine. If you havemultiple administrators sharing the
sameCarbonite Replication Console installation, each administrator will need to be logged in to apply console
server data to their user profile. Youmust close the Carbonite Replication Console to apply the server data file.

Parameters

Name Type Description Required Pipeline
Input

Import
FilePath

String Specify the path and file name of the .xml console data file
that was generated from the Save-DtConsoleServerData
cmdlet. See Save-DtConsoleServerData on page 133.

true false

Replace Switch
Parameter

Remove the servers from the console that are not present
in the import file.

false false

Outputs
None

Examples

Merge-DtConsoleServerData -ImportFilePath "C:\DtAdmin1_ServerData.xml"

The Carbonite Replication Console server data from the file DtAdmin1_ServerData.xml is applied to the user
profile for the user that is currently logged in.

Chapter 2 Cmdlets 97

New-DtFilesAndFoldersJob
Creates a files and folders job

Syntax
New-DtFilesAndFoldersJob [-ServiceHost] <Server> [-Source] <Server> [-Path] <String> [[-TargetPath]
<String>] [-Name <String>] [-JobOptions <JobOptions>] [<CommonParameters>]

Detailed Description
This cmdlet creates a files and folders job on the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

Source Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.

true false

Path String Specify the path on the source that contains the data that
you want to protect

true false

TargetPath String Specify the path on the target where you want to store
the replica data from the source. By default, a one-to-one
mapping will be used on the target, whichmeans the
replica source data will be stored in the same directory
structure on the target.

false false

Name String Specify the name of the job. false false

JobOptions JobOptions
on page
277

Specify the JobOptions returned from theGet-
DtRecommendedJobOptions cmdlet. SeeGet-
DtRecommendedJobOptions on page 62.

false false

Outputs
Guid on page 271

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadTypeName
FilesAndFolders

Chapter 2 Cmdlets 98

$DtWorkload = Get-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGuid

$DtJobOptions = Get-DtRecommendedJobOptions -ServiceHost $DtServerObjectBeta -Source
$DtServerObjectAlpha -JobType FilesAndFolders -Workload $DtWorkload

New-DtFilesAndFoldersJob -ServiceHost $DtServerObjectBeta -Source $DtServerObjectAlpha -Path
"C:\Data" -TargetPath "C:\Alpha\C" -Name "Alpha to Beta" -JobOptions $DtJobOptions.JobOptions

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. A server object is created for the server beta using
the domain\administrator and password credentials. It assigns the server object to the variable called
DtServerObjectBeta. The script then creates a workload on the server for a files and folders job, returning a global
unique ID for the workload, and assigns that ID to the variable DtWorkloadGuid. The workload definition for the
workload type and the server is then stored in the DtWorkload variable. The recommended job options for the
servers and the workload type are then stored in the variable DtJobOptions. A new files and folders job is created
using the servers and the job options. The connections for the server object are then closed.

Chapter 2 Cmdlets 99

New-DtJob
Creates a job

Syntax
New-DtJob [-ServiceHost] <Server> [-Source] <Server> [-JobType] <String> [-JobOptions] <JobOptions> [[-
OtherServers] <Server[]>] [<CommonParameters>]

New-DtJob [-ServiceHost] <Server> [-CreateOptions] <CreateOptions> [<CommonParameters>]

Detailed Description
This cmdlet creates the specified job type on the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

Source Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.

true false

JobType String This value is the job type name.

l Availability for Windows jobs
l FilesAndFolders—Files and folders
l ClusterAwareFilesAndFolders—
Cluster-aware files and folders

l SQL—SQL
l ClusterAwareSql—Cluster-aware SQL
l FullServerFailover—Full server
l VRA—Full server to ESX or full server to
Hyper-V

l Availability for Linux jobs
l LinuxFilesAndFolders—Files and folders
l LinuxFullServerFailover—Full server
l Lvra—Full server to ESX

l Migrate for Windows jobs
l MoveDataOnlyMigration—Files and
folders migration

l MoveServerMigration—Full server
migration

true false

Chapter 2 Cmdlets 100

Name Type Description Required Pipeline
Input

l VraMove—Full server to ESX migration or
full server to Hyper-V migration

l Migrate for Linux jobs
l LinuxMoveServerMigration—Full server
migration

l MoveLvra—Full server to ESX migration
l Other jobs

l Diagnostics—Throughput Diagnostic
Utility

JobOptions JobOptions
on page
277

Specify the JobOptions returned from theGet-
DtRecommendedJobOptions cmdlet. SeeGet-
DtRecommendedJobOptions on page 62.

false false

Other
Servers

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.
Specify multiple server objects in an array using the
format @($server1, $server2).

false false

Create
Options

Create
Options

Specify the create options available in
DoubleTake.Jobs.Contract.CreateOptions. Use the
Windows PowerShell New-Object cmdlet to create this
object.

true false

Outputs
Guid on page 271

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadTypeName
FilesAndFolders

$DtWorkload = Get-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGuid

$DtJobOptions = Get-DtRecommendedJobOptions -ServiceHost $DtServerObjectBeta -Source
$DtServerObjectAlpha -JobType FilesAndFolders -Workload $DtWorkload

$DtFnFJobGuid = New-DtJob -ServiceHost $DtServerObjectBeta -Source $DtServerObjectAlpha -JobType
FilesAndFolders -JobOptions $DtJobOptions.JobOptions

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

Chapter 2 Cmdlets 101

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. A server object is created for the server beta using
the domain\administrator and password credentials. It assigns the server object to the variable called
DtServerObjectBeta. The script then creates a workload on the server for a files and folders job, returning a global
unique ID for the workload, and assigns that ID to the variable DtWorkloadGuid. The workload definition for the
workload type and the server is then stored in the DtWorkload variable. The recommended job options for the
servers and the workload type are then stored in the variable DtJobOptions. A new files and folders job is created
using the servers and the job options. The job ID is stored in the variable DtFnFJobGuid. The connections for the
server object are then closed.

Chapter 2 Cmdlets 102

New-DtServer
Creates a server object

Syntax
New-DtServer [-Name] <String> [[-UserName] <String>] [[-Password] <String>] [-Role <String>]
[<CommonParameters>]

New-DtServer [-Name] <String> -Credential <PSCredential> [-Role <String>] [<CommonParameters>]

Detailed Description
This cmdlet creates a server object with specific credentials associated with it. This may be any type of server in
your organization, for example a Carbonite server, a DNS server, an application server, and so on. This object is
used to communicate with the Double-TakeManagement Service. You should close the connections to this
server object when you are finished using it by using Disconnect-DtServer on page 28.

Parameters

Name Type Description Required Pipeline
Input

Name String Specify the name or IP address of the server, cluster, or
cluster node.

true false

UserName String Specify a user name. If you are using a domain, specify
domain\user name.

true false

Password String Specify the password associated with the user you
have entered. This password will be visible in plain text.

true false

Role String Specify one of the following roles for the server object
you are creating. These servers are used when you
specify the -OtherServers parameter in other cmdlets.

l TargetVimServer—This is the ESX server or
vCenter that will host the target appliance and
the replica virtual machine for protection and
failover. If you are using vCenter, specify your
vCenter. Only specify an ESX host if you are
using ESX standalone.

l ReverseVimServer—This is the ESX server or
vCenter server that will host the reverse target
appliance and the reverse replica virtual machine
for reverse protection and failover. If you are
using vCenter, specify your vCenter. Only
specify an ESX host if you are using ESX
standalone.

l ReverseHelperRole—This is the reverse target

false false

Chapter 2 Cmdlets 103

Name Type Description Required Pipeline
Input

appliance where data will be replicated during
reverse protection.

Credential PSCredential
on page 313

Specify the credential object returned from the
Windows PowerShell Get-Credential cmdlet. This
password will not be visible becauseWindows stores
an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using
this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

true false

Outputs
Server on page 325

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The connections for the server object are then
closed.

$DtCredentialEncrypted = Get-Credential

$DtServerObjectAlpha = New-DtServer -Name alpha -Credential $DtCredential

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

User credentials are stored in a variable called $DtCredential. The script will prompt you to supply the username
and password and the credentials will be encrypted. Then the stored credentials are used to create a new server
object for the server alpha. It assigns the server object to the variable called DtServerObject. The connections for
the server object are then closed.

Chapter 2 Cmdlets 104

New-DtTaskParameters
Creates parameter set

Syntax
New-DtTaskParameters [-ScriptPath] <String> [[-Arguments] <String>] [<CommonParameters>]

Detailed Description
Creates a parameter set to be used with the Invoke-DtQueueTask cmdlet. See Invoke-DtQueueTask on page 92.

Parameters

Name Type Description Required Pipeline
Input

ScriptPath String Specify the full path and script name true false

Arguments String Specify any arguments that need to be passed to the
script.

false false

Outputs
TaskParameters on page 347

Examples

$DtScript = New-DtTaskParameters -ScriptPath "C:\PathDir\ScriptName" -Arguments "arg1 arg2"

The script called ScriptName, located in C:\PathDir, along with two arguments, is stored in the variable DtScript.

$DtPsScript = New-DtTaskParameters -ScriptPath
"C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe" -Arguments "-File
""C:\PathDir\Script.ps1"" ""-Arg1 argument1_info -Arg2 argument2_info"" -ExecutionPolicy RemoteSigned"

The script to launch PowerShell and run the script called Script.ps1, located in C:\PathDir, along with two
arguments and the ExecutionPolicy parameter, is stored in the variable DtPsScript.

Chapter 2 Cmdlets 105

New-DtUri
Creates a URI

Syntax
New-DtUri [-Literal] <String> [<CommonParameters>]

New-DtUri [-NetworkId] <String> [-Credential <PSCredential>] [-Port <Int32>] [-Scheme <String>] [-Query
<String>] [-Fragment <String>] [<CommonParameters>]

Detailed Description
This cmdlet creates a URI (uniform resource identifier) that is used to specify job credentials

Parameters

Name Type Description Required Pipeline
Input

Literal String Specify the entire URI string. true false

NetworkId String Specify the name or IP address of the server. true false

Credential PSCredential
on page 313

Specify the credential object returned from theWindows
PowerShell Get-Credential cmdlet. This password will
not be visible becauseWindows stores an encrypted
password. See Hiding your password in a PowerShell
script on page 485 for basic details on using this cmdlet.
See yourWindows PowerShell documentation for
detailed instructions.

false false

Port Int32 Specify the communications port. false false

Scheme String Specify the scheme name. false false

Query String Specify any additional identification information. false false

Fragment String Specify any identifying information that provides
direction to a secondary resource.

false false

Outputs
Uri

Examples

New-DtUri -Literal "http://server:6320"

A URI is created for http://server:6320.

Chapter 2 Cmdlets 106

New-DtUri -Literal
"foo://username:password@domain.com:6320/location/index?type=volume&directory=C#location "

A URI is created for
foo://username:password@domain.com:6320/location/index?type=volume&directory=C#location.

Chapter 2 Cmdlets 107

New-DtUvraServer
Creates a server object

Syntax
New-DtUvraServer [-Name] <String> [[-UserName] <String>] [[-Password] <String>] [-Port <Int32>] [-Role
<String>] [<CommonParameters>]

New-DtUvraServer [-Name] <String> -Credential <PSCredential> [-Port <Int32>] [-Role <String>]
[<CommonParameters>]

Detailed Description
This cmdlet creates a server object with specific credentials associated with it. This cmdlet is specific to the full
server to ESX appliance job type, The server object may be one of the following types of servers: Carbonite
server, virtual recovery appliance, or VMware host. The object is used to communicate with the Double-Take
Management Service.

Parameters

Name Type Description Required Pipeline
Input

Name String Specify the name or IP address of the server, cluster, or
cluster node.

true false

Username String Specify a user name. If you are using a domain, specify
domain\user name.

true false

Password String Specify the password associated with the user you
have entered. This password will be visible in plain text.

true false

Port Int32 Specify the port for the XMLweb service protocol. By
default, that is 443. Use 6325 for Carbonite servers and
appliances, unless you changed the default Carbonite
port. Do not specify a port for VMware hosts.

false false

Role String Specify one of the following roles for the server object
you are creating. These servers are used when you
specify the -OtherServers parameter in other cmdlets.

l TargetVimServer—This is the ESX server or
vCenter that will host the target appliance and
the replica virtual machine for protection and
failover. If you are using vCenter, specify your
vCenter. Only specify an ESX host if you are
using ESX standalone.

l ReverseVimServer—This is the ESX server or
vCenter server that will host the reverse target

false false

Chapter 2 Cmdlets 108

Name Type Description Required Pipeline
Input

appliance and the reverse replica virtual machine
for reverse protection and failover. If you are
using vCenter, specify your vCenter. Only
specify an ESX host if you are using ESX
standalone.

l ReverseHelperRole—This is the reverse target
appliance where data will be replicated during
reverse protection.

Credential PSCredential
on page 313

Specify the credential object returned from theWindows
PowerShell Get-Credential cmdlet. This password will
not be visible becauseWindows stores an encrypted
password. See Hiding your password in a PowerShell
script on page 485 for basic details on using this cmdlet.
See yourWindows PowerShell documentation for
detailed instructions.

true false

Outputs
Server on page 325

Examples

$DtServerObjectAlpha= New-DtUvraServer -Name alpha -UserName domain\administrator -Password
password -Port 6325

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using port 6325 and the domain\administrator and password
credentials. It assigns the server object to the variable called DtServerObject. The connections for the server
object are then closed.

$DtCredentialEncrypted = Get-Credential

$DtServerObjectAlpha = New-DtUvraServer -Name alpha -Credential $DtCredential -Port 6325

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

User credentials are stored in a variable called $DtCredential. The script will prompt you to supply the username
and password and the credentials will be encrypted. Then the stored credentials are used to create a new server
object for the server alpha using port 6325. It assigns the server object to the variable called DtServerObject. The
connections for the server object are then closed.

Chapter 2 Cmdlets 109

New-DtWorkload
Creates a workload

Syntax
New-DtWorkload [-ServiceHost] <Server> -WorkloadTypeName <String> [-ImageId <Guid>] [-SnapshotId
<Guid>] [<CommonParameters>]

New-DtWorkload [-ServiceHost] <Server> -Workload <Workload> [-ImageId <Guide>] [-SnapshotId <Guid>]
[<CommonParameters>]

Detailed Description
This cmdlet creates a Carbonite workload on the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your source server.

true false

Workload
TypeName

String Specify a supported workload type from theGet-
DtWorkloadType cmdlet. SeeGet-DtWorkloadType on
page 84.

true false

Workload Workload
on page
373

Specify the workload object returned from theGet-
DtWorkload cmdlet. SeeGet-DtWorkload on page 82.

true false

ImageId Guid This property is no longer used. false false

Snapshot
Id

Guid Specify the snapshot GUID returned from theGet-
DtSnapshot cmdlet. SeeGet-DtSnapshot on page 71.

false false

Outputs
Guid on page 271

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadTypeName
FilesAndFolders

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

Chapter 2 Cmdlets 110

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The script then creates a workload on the server for
a files and folders job, returning a global unique ID for the workload, and assigns that ID to the variable
DtWorkloadGuid. The connections for the server object are then closed.

Chapter 2 Cmdlets 111

Remove-DtJob
Deletes the job

Syntax
Remove-DtJob [-ServiceHost] <Server> [-JobId] <Guid> [[-DeleteOptions] <DeleteOptions>]
[<CommonParameters>]

Remove-DtJob [-ServiceHost] <Server> [[-DeleteOptions] <DeleteOptions>] -JobInfo <JobInfo>
[<CommonParameters>]

Detailed Description
This cmdlet deletes the specified job from the specified server. A running job will be stopped before it is deleted.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

Delete
Options

Delete
Options

Specify the delete options available in
DoubleTake.Jobs.Contract.DeleteOptions. Use the
Windows PowerShell New-Object cmdlet to create this
object.

false false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Chapter 2 Cmdlets 112

$DtDeleteOptions = New-Object DoubleTake.Jobs.Contract.DeleteOptions

$DtDeleteOptions.DiscardTargetQueue = $true

Remove-DtJob -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -DeleteOptions
$DtDeleteOptions

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The delete
options are stored in DtDeleteOptions, then the specific delete option DiscardTargetQueue is set to true. Finally
the job is removed using the delete options. The connections for the server object are then closed.

Chapter 2 Cmdlets 113

Remove-DtPhysicalRule
Removes a physical rule

Syntax
Remove-DtPhysicalRule [-ServiceHost] <Server> [-WorkloadId] <Guid> [-Rule] <PhysicalRule>
[<CommonParameters>]

Detailed Description
This cmdlet removes a physical rule from the specified workload on the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your source
server.

true false

WorkloadId Guid on page
271

Specify the workloadGUID returned from the New-
DtWorkload cmdlet using the workload type name
parameter. See New-DtWorkload on page 110.

true false

Rule PhysicalRule
on page 306

Use theWindows PowerShell New-Object cmdlet to
create a physical rule object from
DoubleTake.Common.Contract.PhysicalRule.

true false

Outputs
ChangedItems on page 224

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadTypeName
FilesAndFolders

$DtPhysicalPath = New-Object DoubleTake.Common.Contract.PhysicalRule -Property @
{Path="C:\DirName"}

Remove-DtPhysicalRule -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGuid -Rule
$DtPhysicalPath

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The script then creates a workload on the server for
a files and folders job, returning a global unique ID for the workload, and assigns that ID to the variable

Chapter 2 Cmdlets 114

DtWorkloadGuid. A new object is created from Double-Take.Common.Contract.PhysicalRule to store the
physical path C:\DirName in the variable DtPhysicalPath. Finally, the physical rule is removed from the workload
on the server. The connections for the server object are then closed.

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadTypeName
FilesAndFolders

$DtWorkloadInfo=Get-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGuid

$DtRemoveRule = $DtWorkloadInfo.PhysicalRules |Where-Object {$_.Path -eq "C:\DirNameToRemove"}

Remove-DtPhysicalRule -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGuid -Rule
$DtRemoveRule

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The script then creates a workload on the server for
a files and folders job, returning a global unique ID for the workload, and assigns that ID to the variable
DtWorkloadGuid. The workload information for the workload is then stored in DtWorkloadInfo. The physical rule
within DtWorkloadInfo called C:\DirNameToRemove is then stored in DtRemoveRule. Finally, the physical rule
DtRemoveRule is removed from the workload on the server. The connections for the server object are then
closed.

Chapter 2 Cmdlets 115

Remove-DtSnapshot
Removes a snapshot

Syntax
Remove-DtSnapshot [-ServiceHost] <Server> [-JobId] <Guid> [-SnapshotId] <Guid> [-ConnectionId <Guid>]
[<CommonParameters>]

Remove-DtSnapshot [-ServiceHost] <Server> [-JobId] <Guid> [-Snapshot] <SnapshotEntry> [-ConnectionId
<Guid>] [<CommonParameters>]

Detailed Description
This cmdlet removes a Carbonite snapshot from the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on page
325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.
For this cmdlet, the -ServiceHost should be your
target server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned
from theGet-DtJob cmdlet. See New-DtJob on page
100 andGet-DtJob on page 43.

true false

SnapshotId Guid Specify the snapshot GUID returned from theGet-
DtSnapshot cmdlet. SeeGet-DtSnapshot on page
71.

true false

Connection
Id

ConnectionId
on page 230

Specify the connection ID returned from theGet-
DtConnectionIds cmdlet. SeeGet-DtConnectionIds
on page 36.

false false

Snapshot SnapshotEntry
on page 335

Specify the snapshot entry object returned from the
Get-DtSnapshot cmdlet. SeeGet-DtSnapshot on
page 71.

true false

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

Chapter 2 Cmdlets 116

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

$DtSnaps = Get-DtSnapshot -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

$FirstSnap=$DtSnaps | Select-Object -First 1

Remove-DtSnapshot -ServiceHost $DtServerObjectBeta -SnapshotId $FirstSnap.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The snapshots
available for the job are stored in DtSnaps and then the first snapshot is stored in FirstSnap. That first snapshot is
then deleted. The connections for the server object are then closed.

Chapter 2 Cmdlets 117

Remove-DtSourceQueueSnapshot
Deletes a coordinated snapshot

Syntax
Remove-DtSourceQueueSnapshot [-ServiceHost] <Server> [-CorrelationId] <Guid> [-JobIds] <IEnumerable>
[<CommonParameters>]

Detailed Description
This cmdlet deletes a coordinated snapshot for the specified jobs. Snapshots having the same correlation ID but
not in the specified jobs will not be deleted.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.
For this cmdlet, the -ServiceHost should be your
target server.

true false

CorrelationId Guid Specify the correlation ID used to create the
coordinated snapshot. See Checkpoint-
DtConnectionSourceQueue on page 22.

true false

JobIds IEnumerable Specify an array of job GUIDs. A job GUID is returned
from the New-DtJob cmdlet or the Id within the job
information returned from theGet-DtJob cmdlet. See
New-DtJob on page 100 andGet-DtJob on page 43.

true false

Outputs
None

Examples

$CorId=New-Guid

$Source1Uri = "dtms://112.42.7.63:6325/"

$Source2Uri = "dtms://112.42.7.71:6325/"

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJob1 = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object { $_.SourceHostUri -eq $Source1Uri}

$DtJob2 = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object { $_.SourceHostUri -eq $Source2Uri}

$DtJobsArray = New-Object "System.Collections.Generic.List[Guid]"

Chapter 2 Cmdlets 118

$DtJobsArray.Clear()

$DtJobsArray.Add($DtJob1.Id)

$DtJobsArray.Add($DtJob2.Id)

Checkpoint-DtConnectionSourceQueue -ServiceHost $DtServerObjectBeta -CorrelationId $CorId -JobIds
$DtJobsArray.ToArray()

$DtJobsArray2 = New-Object "System.Collections.Generic.List[Guid]"

$DtJobsArray.Clear()

$DtJobsArray2.Add($DtJob2.Id)

Remove-DtSourceQueueSnapshot -ServiceHost $DtServerObjectBeta -CorrelationId $CorId -JobIds
$DtJobsArray2.ToArray()

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

Several variables are set including a unique correlation ID for the snapshots that will be taken as well as URI
identifiers for the source servers of existing jobs. A server object is created for the server beta using the
domain\administrator and password credentials. It assigns the server object to the variable called
DtServerObjectBeta. The jobs are retrieved from DtServerObjectBeta, and the job information is inserted into
unique variables. An array of job IDs is then created. A coordinated snapshot is taken using the specified
correlation ID and the jobs stored in the array. Only those jobs will have coordinated snapshots. A second array of
job IDs is then created, with just one item in the array. The coordinated snapshot for the job in the second array is
then deleted. Other snapshots having the same correlation ID but not in the specified array will not be deleted. The
connections for the server object are then closed.

Chapter 2 Cmdlets 119

Repair-DtJobOptions
Fixes job option errors and warnings

Syntax
Repair-DtJobOptions [-ServiceHost] <Server> [-JobId] <Guid> [-Step] <VerificationStep[]>
[<CommonParameters>]

Repair-DtJobOptions [-ServiceHost] <Server> [-CreateOptions] <CreateOptions> [-Step] <VerificationStep[]>
[<CommonParameters>]

Repair-DtJobOptions [-ServiceHost] <Server> [-Source] <Server> [-JobType] <String> [-JobOptions]
<JobOptions> [-Step] <VerificationStep[]> [-OtherServers <Server[]>] [<CommonParameters>]

Detailed Description
This cmdlet attempts to fix job option errors and warnings. For those errors and warnings that Carbonite cannot
correct automatically, you will need tomodify the job options manually, modify the source or target configuration,
or perhaps select a different target. Use the first syntax for existing jobs and the second syntax for new jobs.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on page
325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.
For this cmdlet, the -ServiceHost should be your
target server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned
from theGet-DtJob cmdlet. See New-DtJob on page
100 andGet-DtJob on page 43.

true false

Step VerificationStep
on page 354

Specify the verification steps returned by the Get-
DtVerificationStatus cmdlet. SeeGet-
DtVerificationStatus on page 81.

true true

Create
Options

Create
Options

Specify the create options available in
DoubleTake.Jobs.Contract.CreateOptions. Use the
Windows PowerShell New-Object cmdlet to create
this object.

true false

Source Server on page
325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.

true false

JobType String This value is the job type name. true false

Chapter 2 Cmdlets 120

Name Type Description Required Pipeline
Input

l Availability for Windows jobs
l FilesAndFolders—Files and folders
l ClusterAwareFilesAndFolders—
Cluster-aware files and folders

l SQL—SQL
l ClusterAwareSql—Cluster-aware
SQL

l FullServerFailover—Full server
l VRA—Full server to ESX or full server
to Hyper-V

l Availability for Linux jobs
l LinuxFilesAndFolders—Files and
folders

l LinuxFullServerFailover—Full
server

l Lvra—Full server to ESX
l Migrate for Windows jobs

l MoveDataOnlyMigration—Files and
folders migration

l MoveServerMigration—Full server
migration

l VraMove—Full server to
ESX migration or full server to Hyper-
V migration

l Migrate for Linux jobs
l LinuxMoveServerMigration—Full
server migration

l MoveLvra—Full server to ESX
migration

l Other jobs
l Diagnostics—Throughput Diagnostic
Utility

JobOptions JobOptions on
page 277

Specify the JobOptions returned from theGet-
DtRecommendedJobOptions cmdlet. SeeGet-
DtRecommendedJobOptions on page 62.

true false

Other
Servers

Server on page
325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.
Specify multiple server objects in an array using the
format @($server1, $server2).

false false

Chapter 2 Cmdlets 121

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

$DtValidation = Confirm-DtJobOptions -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -
JobOptions $DtJob.Options

$DtStatus = Get-DtVerificationStatus -ServiceHost $DtServerObjectBeta -Token $DtValidation

$DtRepair = Repair-DtJobOptions -ServiceHost $DtTarget -JobId $DtJob.Id -JobOptions $DtJob.Options -
Step $DtStatus.Steps

Edit-DtJob -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -JobOptions $DtRepair.Options

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The job options
used by the job are confirmed, and the validation result is stored in DtValidation. The details of the validation are
stored in the variable DtStatus. Ideally you should script this with a loop so you can wait until the verification
status is complete before continuing with your script. Those items that can automatically be fixed are corrected. If
the job options weremodified in order to fix an issues, the updated job options are now contained in the variable
$DtRepair. The updated job options are then applied to the job. The connections for the server object are then
closed.

Chapter 2 Cmdlets 122

Request-DtOnlineActivation
Activates the license

Syntax
Request-DtOnlineActivation -Code <String> -ServerName <String> -ServerInformation <String> [-ServiceHost
<Server>] [-EmailAddress <String>] [<CommonParameters>]

Detailed Description
This cmdlet activates the Carbonite license over the Internet using the server information returned by the Get-
DtOnlineActivationRequest on page 51 cmdlet.

Parameters

Name Type Description Required Pipeline
Input

Code String Specify the 24-character, alpha-numeric license key
which applies the appropriate Carbonite license to your
Carbonite server. Specify multiple keys in an array using
the format @(code1, code2). You can also use the code
that is returned by the Get-DtOnlineActivationRequest on
page 51 cmdlet.

true true

Server
Name

String Specify the name of the server or use the server name
returned by the Get-DtOnlineActivationRequest on page
51 cmdlet.

true true

Server
Information

String Specify the server information returned by the Get-
DtOnlineActivationRequest on page 51 cmdlet.

true true

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

false false

Email
Address

String Specify a valid email address. false false

Outputs
ActivationInformation on page 212

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$ServerInfo = Get-DtOnlineActivationRequest -ServiceHost $DtServerObjectAlpha

Request-DtOnlineActivation -Code "1234-5678-9012-3456-7890-1234" -ServerName $DtServerObjectAlpha -

Chapter 2 Cmdlets 123

ServerInformation $ServerInfo.ServerInformation

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The server information for the online activation
process is returned. It assigns the server information to the variable called ServerInfo. The license is activated
online. The connections for the server object are then closed.

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Get-DtOnlineActivationRequest -ServiceHost $DtServerObjectAlpha | Request-DtOnlineActivation | Set-
DtActivationCode

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The server information for the online activation
process is returned. The output from theGet-DtOnlineActivationRequest cmdlet is piped directly to Request-
DtOnlineActivation, which activates the license online, and then that output (from Request-DtOnlineActivation) is
piped directory to Set-DtActivationCode to set the activation key on the server.The connections for the server
object are then closed.

Chapter 2 Cmdlets 124

Request-DtOnlineDeactivation
Deactivates the license

Syntax
Request-DtOnlineDeactivation [-ServiceHost] <Server> [-EmailAddress <String>] [<CommonParameters>]

Detailed Description
This cmdlet deactivates the Carbonite license over the Internet for the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

Email
Address

String Specify a valid email address. false false

Outputs
None

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Request-DtOnlineDectivation -ServerName $DtServerObjectAlpha

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The license for that server is deactivated. The
connections for the server object are then closed.

Chapter 2 Cmdlets 125

Restart-DtReplicationService
Stop and restarts the Double-Take service

Syntax
Restart-DtReplicationService [-ServiceHost] <Server> [<CommonParameters>]

Detailed Description
This cmdlet stops and restarts the Double-Take service on the specified server. This cmdlet does not impact the
Double-TakeManagement Service.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost could be your source or target server.

true false

Outputs
None

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Restart-DtReplicationService -ServiceHost $DtServerObjectAlpha

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the Double-Take service on the server is
stopped and restarted. The connections for the server object are then closed.

Chapter 2 Cmdlets 126

Resume-DtJob
Resumes a paused job

Syntax
Resume-DtJob [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Resume-DtJob [-ServiceHost] <Server> -JobInfo <JobInfo> [<CommonParameters>]

Detailed Description
This cmdlet resumes a paused job. All jobs from the same source to the same IP address on the target will be
resumed.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Resume-DtJob -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable

Chapter 2 Cmdlets 127

DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The job is then
resumed. The connections for the server object are then closed.

Chapter 2 Cmdlets 128

Resume-DtMirror
Resumes a pausedmirror

Syntax
Resume-DtMirror [-ServiceHost] <Server> [-JobId] <Guid> [-ConnectionId <Guid>] [<CommonParameters>]

Resume-DtMirror [-ServiceHost] <Server> -JobInfo <JobInfo> [-ConnectionId <Guid>] [<CommonParameters>]

Detailed Description
This cmdlet resumes a pausedmirror.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned from
theGet-DtJob cmdlet. See New-DtJob on page 100
andGet-DtJob on page 43.

true false

Connection
Id

ConnectionId
on page 230

Specify the connection ID returned from theGet-
DtConnectionIds cmdlet. SeeGet-DtConnectionIds on
page 36.

false false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-
DtJob cmdlet. The job information can be piped from
theGet-DtJob cmdlet and used in this cmdlet. See
Get-DtJob on page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Resume-DtMirror -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

Chapter 2 Cmdlets 129

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. Themirror for the
job is then resumed. The connections for the server object are then closed.

Chapter 2 Cmdlets 130

Resume-DtTarget
Resumes Carbonite processing

Syntax
Resume-DtTarget [-ServiceHost] <Server> -All [<CommonParameters>]

Resume-DtTarget [-ServiceHost] <Server> [-JobId] <Guid> [-ConnectionId <Guid>] [<CommonParameters>]

Resume-DtTarget [-ServiceHost] <Server> -JobInfo <JobInfo> [-ConnectionId <Guid>] [<CommonParameters>]

Detailed Description
This cmdlet resumes Carbonite processing on the target.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned from
theGet-DtJob cmdlet. See New-DtJob on page 100
andGet-DtJob on page 43.

true false

Connection
Id

ConnectionId
on page 230

Specify the connection ID returned from theGet-
DtConnectionIds cmdlet. SeeGet-DtConnectionIds on
page 36.

false false

All Switch
Parameter

Execute the cmdlet on all jobs that are present true false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-
DtJob cmdlet. The job information can be piped from
theGet-DtJob cmdlet and used in this cmdlet. See
Get-DtJob on page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

Chapter 2 Cmdlets 131

Resume-DtTarget -ServiceHost $DtServerObjectBeta -All

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. Carbonite processing on that server is then resumed.
The connections for the server object are then closed.

Chapter 2 Cmdlets 132

Save-DtConsoleServerData
Saves Carbonite Replication Console server data

Syntax
Save-DtConsoleServerData [-FilePath] <String> [<CommonParameters>]

Detailed Description
This cmdlet saves the server information from the Carbonite Replication Console for the user that is currently
logged into themachine. If you havemultiple administrators sharing the sameCarbonite Replication Console
installation, each administrator will need to be logged in to save their console server data.

Parameters

Name Type Description Required Pipeline
Input

FilePath String Specify the path and file namewith an .xml fie extension to
store the server data from the Carbonite Replication
Console.

true false

Outputs
None

Examples

Save-DtConsoleServerData -FilePath "C:\DtAdmin1_ServerData.xml"

The Carbonite Replication Console server data for the user currently logged in will be saved at the root of the C:
drive to the file DtAdmin1_ServerData.xml.

Chapter 2 Cmdlets 133

Save-DtJobDiagnostics
Saves a job diagnostics file

Syntax
Save-DtJobDiagnostics [-ServiceHost] <Server> [-JobId] <Guid[]> [<CommonParameters>]

Save-DtJobDiagnostics [-ServiceHost] <Server> -JobInfo <JobInfo[]> [<CommonParameters>]

Detailed Description
Saves a job diagnostics file to the \Service\Data\Diagnostics directory of your Carbonite installation on the
specified server. The file data identifies the servers in the job, the job information, and the job status at the
moment the diagnostics file was created.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

true true

Outputs
None

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Save-DtJobDiagnostics -Servicehost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

Chapter 2 Cmdlets 134

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The diagnostics
files is then saved on the server. The connections for the server object are then closed.

Chapter 2 Cmdlets 135

Set-DtActivationCode
Sets the Carbonite license key or activation key

Syntax
Set-DtActivationCode [-ServiceHost] <Server> [-Code] <String[]> [-AdditionalCode <String[]>] [-ActivationKey
<String>] [<CommonParameters>]

Detailed Description
This cmdlet sets the Carbonite license key or activation key on the specified server. It also returns the Carbonite
license key validation information from theGet-DtActivationStatus cmdlet. SeeGet-DtActivationStatus on page
32.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost could be your source or target server.

true true

Code String Specify the 24-character, alpha-numeric license key which
applies the appropriate Carbonite license to your Carbonite
server. Specify multiple keys in an array using the format
@(code1, code2).

true true

Additional
Code

String Specify any additional keys. Specify multiple keys in an
array using the format @(code1, code2).

false false

Activation
Key

String Specify the 24-character, alpha-numeric activation key
which activates your Carbonite license.

false true

Outputs
ActivationStatus on page 213

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Set-DtActivationCode -ServiceHost $DtServerObjectAlpha -Code 1234567890abcdefghij1234

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the license key 1234567890abcdefghij1234 is
applied to the server. The server returns the license key information. The connections for the server object are
then closed.

Chapter 2 Cmdlets 136

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Get-DtOnlineActivationRequest -ServiceHost $DtServerObjectAlpha | Request-DtOnlineActivation | Set-
DtActivationCode

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The server information for the online activation
process is returned. The output from theGet-DtOnlineActivationRequest cmdlet is piped directly to Request-
DtOnlineActivation, which activates the license online, and then that output (from Request-DtOnlineActivation) is
piped directory to Set-DtActivationCode to set the activation key on the server.The connections for the server
object are then closed.

Chapter 2 Cmdlets 137

Set-DtBandwidthLimit
Sets bandwidth limiting

Syntax
Set-DtBandwidthLimit [-ServiceHost] <Server> [-JobId] <Guid> [-BandwidthLimit] <BandwidthLimit> [-
ConnectionId <Guid>] [<CommonParameters>]

Set-DtBandwidthLimit [-ServiceHost] <Server> [-BandwidthLimit] <BandwidthLimit> -JobInfo <JobInfo> [-
ConnectionId <Guid>] [<CommonParameters>]

Detailed Description
This cmdlet sets bandwidth limiting for the specified job .

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on page
325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.
For this cmdlet, the -ServiceHost should be your
target server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned
from theGet-DtJob cmdlet. See New-DtJob on page
100 andGet-DtJob on page 43.

true false

Bandwidth
Limit

BandwidthLimit
on page 219

Specify the bandwidth limit configuration from Get-
BandwidthLimit. SeeGet-DtBandwidthLimit on page
34.

true false

Connection
Id

ConnectionId
on page 230

Specify the connection ID returned from theGet-
DtConnectionIds cmdlet. SeeGet-DtConnectionIds
on page 36.

false false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-
DtJob cmdlet. The job information can be piped from
theGet-DtJob cmdlet and used in this cmdlet. See
Get-DtJob on page 43.

true true

Outputs
None

Chapter 2 Cmdlets 138

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

$DtFixedBandwidth = Get-DtBandwidthLimit -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

$DtFixedBandwidth.Mode = "Fixed"

$DtFixedBandwidth.Limit = 100000

Set-DtBandwidthLimit -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -BandwidthLimit
$DtFixedBandwidth

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The bandwidth
limiting configuration is then stored in DtFixedBandwidth. TheMode is then changed to fixed and the Limit is set to
100,000 bytes/second. Finally, the bandwidth settings are applied to the job. The connections for the server object
are then closed.

Chapter 2 Cmdlets 139

Set-DtEmailNotificationOptions
Sets e-mail notification configuration

Syntax
Set-DtEmailNotificationOptions [-ServiceHost] <Server> [-Options] <EmailNotificationOptions>
[<CommonParameters>]

Detailed Description
This cmdlet sets the Carbonite e-mail notification configuration for the specified server

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on page 325 Specify the server object returned from the
New-DtServer cmdlet. See New-DtServer
on page 103. For this cmdlet, the -
ServiceHost could be your source or target
server.

true false

Options EmailNotificationOptions
on page 252

Specify the object returned from theGet-
DtEmailNotificationOptions cmdlet. See
Get-DtEmailNotificationOptions on page 41.

true false

Outputs
EmailNotificationOptions on page 252

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtEmailOptions = Get-DtEmailNotificationOptions -ServiceHost $DtServerObject

$DtEmailOptions.Enabled = $true

$DtEmailOptions.SmtpServer = "mail.company.com"

Set-DtEmailNotificationOptions -ServiceHost $DtServerObjectAlpha -Options $DtEmailOptions

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the default Carbonite e-mail notification options
are stored in the variable DtEmailOptions. Two of the options are then changed. The Enabled option is set to true
which turns on the e-mail notification feature. The SMTP server is also configured for mail.company.com. Finally
those changes for the email notification options are set on the server. The connections for the server object are
then closed.

Chapter 2 Cmdlets 140

Set-DtJobCredentials
Updates credentials

Syntax
Set-DtJobCredentials [-ServiceHost] <Server> [-JobId] <Guid> [-Source <PSCredential>] [-Target
<PSCredential>] [-OtherServers <Server[]>] [<CommonParameters>]

Set-DtJobCredentials [-ServiceHost] <Server> -JobInfo <JobInfo> [-Source <PSCredential>] [-Target
<PSCredential>] [-OtherServers <Server[]>] [<CommonParameters>]

Detailed Description
Updates the credentials for the source, appliance, and VMware host servers used in the specified job.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer or New-DtUvraServer cmdlet. See New-
DtServer on page 103 or New-DtUvraServer on page
108.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned from
theGet-DtJob cmdlet. See New-DtJob on page 100 and
Get-DtJob on page 43.

true false

Source PSCredential
on page 313

Specify the credential object returned from theWindows
PowerShell Get-Credential cmdlet. This password will
not be visible becauseWindows stores an encrypted
password. See Hiding your password in a PowerShell
script on page 485 for basic details on using this cmdlet.
See yourWindows PowerShell documentation for
detailed instructions.

false false

Target PSCredential
on page 313

Specify the credential object returned from theWindows
PowerShell Get-Credential cmdlet. This password will
not be visible becauseWindows stores an encrypted
password. See Hiding your password in a PowerShell
script on page 485 for basic details on using this cmdlet.
See yourWindows PowerShell documentation for
detailed instructions.

fasle false

Other
Servers

Server on
page 325

Specify the server object returned from the New-
DtServer or New-DtUvraServer cmdlet. See New-
DtServer on page 103 or New-DtUvraServer on page

false false

Chapter 2 Cmdlets 141

Name Type Description Required Pipeline
Input

108. Specify the server object in an array using the
format @($server).

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob
on page 43.

true true

Outputs
None

Examples

$DtCredentials = Get-Credential domain\administrator

$DtServerObjectAlpha = New-DtServer -Name alpha -Credential $DtCredentials

$DtServerObjectBeta = New-DtServer -Name beta -Credential $DtCredentials

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Set-DtJobCredentials -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -Source $DtCredentials -
Target $DtCredentials

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

You will be prompted for credentials for the domain\administrator account and they will be stored in DtCredentials.
Then a server object is created for the servers alpha and beta using the stored credentials. The objects are stored
in DtServerObjectAlpha and DtServerObjectBeta, respectively. The job(s) are retrieved from DtServerObjectBeta,
but only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. Finally, the
credentials are updated for the job using the stored credentials. The connections for the server object are then
closed.

Chapter 2 Cmdlets 142

Set-DtLogicalItemSelection
Adds or removes logical items

Syntax
Set-DtLogicalItemSelection [-ServiceHost] <Server> [-WorkloadId] <Guid> [-LogicalPath] <String> [-Unselect]
[<CommonParameters>]

Detailed Description
This cmdlet adds or removes a logical items for the specified workload for the specified server. Adding or
removing logical items will add or remove physical rules depending on the workload type.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your source server.

true false

WorkloadId Guid on
page 271

Specify the workloadGUID returned from the New-
DtWorkload cmdlet using the workload type name
parameter. See New-DtWorkload on page 110.

true false

Logical
Path

String Specify the path of an item returned from Get-
DtLogicalItem. SeeGet-DtLogicalItem on page 48.

true false

Unselect Switch
Parameter

Specify this option if you want to remove the logical item. false false

Outputs
ChangedItems on page 224

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtWorkloadGuid = New-DtWorkload -ServiceHost $DtServerObjectAlpha -WorkloadTypeName
FilesAndFolders

$DtLogicalItems = Get-DtLogicalItem -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGUID

Set-DtLogicalItemSelection -ServiceHost $DtServerObjectAlpha -WorkloadId $DtWorkloadGuid -LogicalPath
$DtLogicalItem[0].Path

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. The script then creates a workload on the server for

Chapter 2 Cmdlets 143

a files and folders job, returning a global unique ID for the workload, and assigns that ID to the variable
DtWorkloadGuid. The logical items associated with the workload type and the server are then stored in the
variable DtLogicalItems. Finally, the first logical item in DtLogicalItems is added to the workload. The connections
for the server object are then closed.

Chapter 2 Cmdlets 144

Set-DtOption
Sets server or job options

Syntax
Set-DtOption [-ServiceHost] <Server> [-Setting] <Hashtable>] [<CommonParameters>]

Set-DtOption [-ServiceHost] <Server> [-Name] <String> -IntValue <Int64> [<CommonParameters>]

Set-DtOption [-ServiceHost] <Server> [-Name] <String> -StringValue <String> [<CommonParameters>]

Set-DtOption [-ServiceHost] <Server> [-Name] <String> -MultiStringValue <String[]> [<CommonParameters>]

Detailed Description
This cmdlet sets the value of the Carbonite server or job option for the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost could be your source or target server.

true false

Setting Hashtable Specify a hash table using the format @{option1=value1;
option2=value2}. See Server and job settings on page 501
details on job and server options.

true false

Name String Specify the name of the job or server option. See Server
and job settings on page 501 details on job and server
options.

true false

IntValue Int64 Specify an integer value for the server or job option. See
Server and job settings on page 501 details on job and
server options.

true false

StringValue String Specify a single string (text) value for the server or job
option

true false

MultiString
Value

String Specify multiple string (text) values for the server or job
option in an array using the format @(string1, string2).

true false

Outputs
None

Chapter 2 Cmdlets 145

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Set-DtOption -ServiceHost $DtServerObjectAlpha -Setting@{MaxChecksumBlocks=64;
MirrorChunkSize=131072}

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the server settings MaxChecksumBlocks and
MirrorChunkSize are set to 64 and 131072, respectively, on the server. The connections for the server object are
then closed.

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Set-DtOption -Servicehost $DtServerObjectAlpha -NameMirrorChunkSize -IntValue 64

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then it sets theMirrorChunkSize server setting to
64. The connections for the server object are then closed.

See Viewing and setting job and server options on page 480 for a sample script that gathers and sets several
Carbonite job and server options.

Chapter 2 Cmdlets 146

Set-DtPathBlocking
Blocks writing on the target

Syntax
Set-DtPathBlocking [-ServiceHost] <Server> [-SourceAddress] <String> [[-Mode] <PathBlockingMode>]
[<CommonParameters>]

Detailed Description
This cmdlet blocks writing to the replica source data located on the target, keeping the data from being changed
outside of Carbonite processing.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

Source
Address

String Specify the IP address of the source, including the port, for
example, 123.123.123.123:6320.

true false

Mode Path
Blocking
Mode

Specify Blocked or Unblocked. false false

Outputs
None

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Set-DtPathBlocking -ServiceHost $DtServerObjectAlpha -SourceAddress "112.42.74.29:6320" -Mode Blocked

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then it sets the target paths associated with the
replica data from the specified source IP address to blocked. The connections for the server object are then
closed.

Chapter 2 Cmdlets 147

Set-DtScriptCredentials
Sets credentials

Syntax
Set-DtScriptCredentials [-ServiceHost] <Server> [-Credential] <PSCredential> [<CommonParameters>]

Set-DtScriptCredentials [-ServiceHost] <Server> [-UserName] <String> [-Password] <String>
[<CommonParameters>]

Detailed Description
This cmdlet sets the credentials for Carbonite to use when running scripts on the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost could be your source or
target server.

true false

Credential PSCredential
on page 313

Specify the credential object returned from the
Windows PowerShell Get-Credential cmdlet. This
password will not be visible becauseWindows stores
an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using
this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

true false

UserName String Specify a user name. If you are using a domain, specify
domain\user name.

true false

Password String Specify the password associated with the user you
have entered. This password will be visible in plain text.

true false

Outputs
None

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtCredentials = Get-Credential domain\administrator

Set-DtScriptCredentials -ServiceHost $DtServerObjectAlpha -Credential $DtCredentials

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

Chapter 2 Cmdlets 148

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then you will be prompted for credentials for the
domain\administrator account and those credentials will be stored in the variable DtCredentials. Finally, the
credentials used for Carbonite scripts on the server will be set to the stored credentials. The connections for the
server object are then closed.

Chapter 2 Cmdlets 149

Set-DtServerCredential
Changes server credentials

Syntax
Set-DtServerCredential -Input <Server> -Credential <PSCredential> [<CommonParameters>]

Detailed Description
This cmdlet changes the credentials associated with the server object that has already been created using the
New-DtServer cmdlet. See New-DtServer on page 103 for more details on creating a server object.

Parameters

Name Type Description Required Pipeline
Input

Input String or
Server on
page 325

Specify the name or IP address of the server, cluster, or
cluster node.

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.

true false

Credential PSCredential
on page 313

Specify the credential object returned from theWindows
PowerShell Get-Credential cmdlet. This password will
not be visible becauseWindows stores an encrypted
password. See Hiding your password in a PowerShell
script on page 485 for basic details on using this cmdlet.
See yourWindows PowerShell documentation for
detailed instructions.

true false

Outputs
Server on page 325

Examples

$DtCredentialEncrypted = Get-Credential

Set-DtServerCredential -Input alpha -Credential $DtCredential

User credentials are stored in a variable called $DtCredential. The script will prompt you to supply the username
and password and the credentials will be encrypted. Then the stored credentials are used to update the current
credentials on the server alpha.

Chapter 2 Cmdlets 150

Set-DtVmwareCertificatePolicy
Sets the VMware certificate policy

Syntax
Set-DtVmwareCertificatePolicy [-ServiceHost] <Server> [-VmwareServer] <String> [-Policy]
<VmwareCertificatePolicy> [<CommonParameters>]

Detailed Description
This cmdlet sets the VMware certificate policy on the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on page 325 Specify the server object
returned from the New-
DtServer cmdlet. See
New-DtServer on page
103. For this cmdlet, the -
ServiceHost should be
your target server.

true false

VmwareServer String Specify the name of the
VMware server (ESX host
or vCenter) where the
target server is located.

false false

Policy VmwareCertificatePolicy
on page 436

Specify the VMware
security certificate policy
you want to apply.

true false

Outputs
None

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$TestResult = Test-DtVmwareCertificatePolicy -ServiceHost $DtServerObjectBeta -VmwareServer
112.47.15.6

Set-DtVmwareCertificatePolicy -ServiceHost $DtServerObjectBeta -VmwareServer 112.47.15.6 -Policy
AllowAll

Install-DtVmwareCertificate -ServiceHost $DtServerObjectBeta -Certificate $TestResult[1]

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

Chapter 2 Cmdlets 151

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The server $DTServerObjectBeta is tested to see if
the current policy or any valid certificates will allow a connection to the specified VMware server. In this example,
assume the return is false. The VMware certificate policy on the server $DTServerObjectBeta is then set to allow
all certificates to be installed. The certificate from the Test-DtVmwareCertificatePolicy false return is then
installed on the server $DTServerObjectBeta. The connections for the server object are then closed.

Chapter 2 Cmdlets 152

Start-DtJob
Starts a job

Syntax
Start-DtJob [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Start-DtJob [-ServiceHost] <Server> -JobInfo <JobInfo> [<CommonParameters>]

Detailed Description
This cmdlet starts the specified job.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Start-DtJob -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable

Chapter 2 Cmdlets 153

DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The job is then
started. The connections for the server object are then closed.

Chapter 2 Cmdlets 154

Start-DtJobFailback
Starts failback

Syntax
Start-DtJobFailback [-ServiceHost] <Server> [-JobId] <Guid> [-FailbackOptions] <FailbackOptions>
[<CommonParameters>]

Start-DtJobFailback [-ServiceHost] <Server> [-FailbackOptions] <FailbackOptions> -JobInfo <JobInfo>
[<CommonParameters>]

Detailed Description
This cmdlet starts failback for the specified job using the specified failback options.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on page
325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.
For this cmdlet, the -ServiceHost should be your
target server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned
from theGet-DtJob cmdlet. See New-DtJob on page
100 andGet-DtJob on page 43.

true false

Failback
Options

FailbackOptions
on page 259

Specify the failback options returned from theGet-
DtRecommendedFailbackOptions cmdlet. SeeGet-
DtRecommendedFailbackOptions on page 58.

true false

JobInfo JobInfo on page
274

Specify the job information returned from theGet-
DtJob cmdlet. The job information can be piped from
theGet-DtJob cmdlet and used in this cmdlet. See
Get-DtJob on page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Chapter 2 Cmdlets 155

$DtFailbackOptions = Get-DtRecommendedFailbackOptions -ServiceHost $DtServerObjectBeta -JobId
$DtJobForAlpha.Id

Start-DtJobFailback -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -FailbackOptions
$DtFailbackOptions.FailbackOptions

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The failback
options are stored in DtFailbackOptions. Failback is then started using the failback options. The connections for
the server object are then closed.

Chapter 2 Cmdlets 156

Start-DtJobFailover
Starts failover

Syntax
Start-DtJobFailover [-ServiceHost] <Server> [-JobId] <Guid> [-FailoverOptions] <FailoverOptions>
[<CommonParameters>]

Start-DtJobFailover [-ServiceHost] <Server> [-FailoverOptions] <FailoverOptions> -JobInfo <JobInfo>
[<CommonParameters>]

Detailed Description
This cmdlet starts failover for the specified job using the specified failover options.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on page
325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.
For this cmdlet, the -ServiceHost should be your
target server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned
from theGet-DtJob cmdlet. See New-DtJob on page
100 andGet-DtJob on page 43.

true false

Failover
Options

FailoverOptions
on page 260

Specify the failover options returned from theGet-
DtRecommendedFailoverOptions cmdlet. SeeGet-
DtRecommendedFailoverOptions on page 60.

true false

JobInfo JobInfo on page
274

Specify the job information returned from theGet-
DtJob cmdlet. The job information can be piped from
theGet-DtJob cmdlet and used in this cmdlet. See
Get-DtJob on page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Chapter 2 Cmdlets 157

$DtFailoverOptions = Get-DtRecommendedFailoverOptions -ServiceHost $DtServerObjectBeta -JobId
$DtJobForAlpha.Id

$DtFailoverOptions.FailoverOptions.FailoverMode = 1

Start-DtJobFailover -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -FailoverOptions
$DtFailoverOptions.FailoverOptions

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The failover
options are stored in DtFailoverOptions, and then the FailoverMode is set to 1 for a test failover. Failover is then
started using the failover options. The connections for the server object are then closed.

Chapter 2 Cmdlets 158

Start-DtJobRestore
Starts restoration

Syntax
Start-DtJobRestore [-ServiceHost] <Server> [-JobId] <Guid> [-RestoreOptions] <RestoreOptions>
[<CommonParameters>]

Start-DtJobRestore [-ServiceHost] <Server> [-RestoreOptions] <RestoreOptions> -JobInfo <JobInfo>
[<CommonParameters>]

Detailed Description
This cmdlet starts the restoration process for the specified job using the specified restoration options.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on page
325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.
For this cmdlet, the -ServiceHost should be your
target server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned
from theGet-DtJob cmdlet. See New-DtJob on page
100 andGet-DtJob on page 43.

true false

Restore
Options

RestoreOptions
on page 321

Specify the restoration options returned from theGet-
DtRecommendedRestoreOptions cmdlet. SeeGet-
DtRecommendedRestoreOptions on page 65.

true false

JobInfo JobInfo on page
274

Specify the job information returned from theGet-
DtJob cmdlet. The job information can be piped from
theGet-DtJob cmdlet and used in this cmdlet. See
Get-DtJob on page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {

Chapter 2 Cmdlets 159

$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

$DtRestoreOptions = Get-DtRecommendedRestoreOptions -ServiceHost $DtServerObjectBeta -JobId
$DtJobForAlpha.Id -RestoreTarget $DtServerObjectAlpha

$DtRestoreOptions.RestoreOptions.RestoreParameters.ProcessOrphans = $true

Start-DtJobRestore -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -RestoreOptions
$DtRestoreOptions.RestoreOptions

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. A server object is created for the server beta using
the domain\administrator and password credentials. It assigns the server object to the variable called
DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but only the job information where the
sourcemachine name is equivalent to the name stored in the variable DtServerObjectAlpha is retrieved. That
information is then stored in the variable DtJobForAlpha. The restoration options are stored in DtRestoreOptions,
and then the ProcessOrphans option is set to true. Restoration is then started using the restoration options. The
connections for the server object are then closed.

Chapter 2 Cmdlets 160

Start-DtJobReverse
Starts reverse

Syntax
Start-DtJobReverse [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Start-DtJobReverse [-ServiceHost] <Server> -JobInfo <JobInfo> [<CommonParameters>]

Detailed Description
This cmdlet starts the reverse process for the specified job.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Start-DtJobReverse -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable

Chapter 2 Cmdlets 161

DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The job is then
reversed. The connections for the server object are then closed.

Chapter 2 Cmdlets 162

Start-DtMirror
Starts mirroring

Syntax
Start-DtMirror [-ServiceHost] <Server> [-JobId] <Guid> [-MirrorParameters] <MirrorParameters> [-ConnectionId
<Guid>] [<CommonParameters>]

Start-DtMirror [-ServiceHost] <Server> [-MirrorParameters] <MirrorParameters> -JobInfo <JobInfo> [-
ConnectionId <Guid>] [<CommonParameters>]

Detailed Description
This cmdlet starts mirroring on the specified job.

Parameters

Name Type Description Require
d

Pipelin
e Input

Service
Host

Server on page
325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned from
theGet-DtJob cmdlet. See New-DtJob on page 100 and
Get-DtJob on page 43.

true false

Mirror
Parameter
s

MirrorParameter
s on page 291

Specify themirror options available in
DoubleTake.Core.Contract.Connection.MirrorParameter
s. Use theWindows PowerShell New-Object cmdlet to
create this object.

true false

Connectio
n
Id

ConnectionId on
page 230

Specify the connection ID returned from theGet-
DtConnectionIds cmdlet. SeeGet-DtConnectionIds on
page 36.

false false

JobInfo JobInfo on page
274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

true true

Outputs
ActivityToken on page 215

Chapter 2 Cmdlets 163

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

$DtMirrorChecksum = New-Object DoubleTake.Core.Contract.Connection.MirrorParameters

$DtMirrorChecksum.ComparisonCriteria = "Checksum"

$DtMirrorChecksum.Options = "Synchronize,CalculateDifferences"

Start-DtMirror -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -MirrorParameters
$DtMirrorChecksum

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. Themirror
options are stored in DtMirrorChecksum. The ComparisonCriteria value is changed to checksum and theOptions
are set to Synchronize and CalculateDifferences. Then themirror is started for the job using the storedmirroring
options. The connections for the server object are then closed.

Chapter 2 Cmdlets 164

Start-DtOrphansProcessing
Starts orphan processing

Syntax
Start-DtOrphansProcessing [-ServiceHost] <Server> [-JobId] <Guid> [-ConnectionId <Guid>]
[<CommonParameters>]

Start-DtOrphansProcessing [-ServiceHost] <Server> -JobInfo <JobInfo> [-ConnectionId <Guid>]
[<CommonParameters>]

Detailed Description
This cmdlet starts orphan files processing on the specified job.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned from
theGet-DtJob cmdlet. See New-DtJob on page 100
andGet-DtJob on page 43.

true false

Connection
Id

ConnectionId
on page 230

Specify the connection ID returned from theGet-
DtConnectionIds cmdlet. SeeGet-DtConnectionIds on
page 36.

false false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-
DtJob cmdlet. The job information can be piped from
theGet-DtJob cmdlet and used in this cmdlet. See
Get-DtJob on page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Chapter 2 Cmdlets 165

Start-DtOrphansProcessing -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. Orphan file
processing is then started for the job. The connections for the server object are then closed.

Chapter 2 Cmdlets 166

Start-DtReplication
Starts replication

Syntax
Start-DtReplication [-ServiceHost] <Server> [-JobId] <Guid> [-ConnectionId <Guid>] [<CommonParameters>]

Start-DtReplication [-ServiceHost] <Server> -JobInfo <JobInfo> [-ConnectionId <Guid>]
[<CommonParameters>]

Detailed Description
This cmdlet starts replication on the specified job.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned from
theGet-DtJob cmdlet. See New-DtJob on page 100
andGet-DtJob on page 43.

true false

Connection
Id

ConnectionId
on page 230

Specify the connection ID returned from theGet-
DtConnectionIds cmdlet. SeeGet-DtConnectionIds on
page 36.

false false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-
DtJob cmdlet. The job information can be piped from
theGet-DtJob cmdlet and used in this cmdlet. See
Get-DtJob on page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Start-DtReplication -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Chapter 2 Cmdlets 167

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. Replication is
then started for the job. The connections for the server object are then closed.

Chapter 2 Cmdlets 168

Start-DtVerify
Starts verification

Syntax
Start-DtVerify [-ServiceHost] <Server> [-JobId] <Guid> [-Synchronize] [-Newer] [-Checksum] [-ProcessOrphans]
[-ConnectionId <Guid>] [<CommonParameters>]

Start-DtVerify [-ServiceHost] <Server> -JobInfo <JobInfo> [-Synchronize] [-Newer] [-Checksum] [-
ProcessOrphans] [-ConnectionId <Guid>] [<CommonParameters>]

Detailed Description
This cmdlet starts the Carbonite verification process to check that the replica source data on the target is identical
to the actual data on the source

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.
For this cmdlet, the -ServiceHost should be your
target server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned
from theGet-DtJob cmdlet. See New-DtJob on page
100 andGet-DtJob on page 43.

true false

Synchronize Switch
Parameter

Mirrors to the target any protected files that are
different on the source. Without this option, the
verification process will only verify the data and
generate a verification log file, but it does not remirror
any files that are different on the source and target.

false false

Newer Switch
Parameter

If you aremirroring files to the target during the
verification process with the synchronize option, this
option will only mirror files that are newer on the
source than on the target. If you are using a database
application, do not use this option unless you know for
certain that you need it. With database applications, it
is critical that all files, not just some of the file that
might be newer, get mirrored.

false false

Checksum Switch
Parameter

If you aremirroring files to the target during the
verification process with the synchronize option, this
option will have the verification process perform a
block checksum comparison to determine which

false false

Chapter 2 Cmdlets 169

Name Type Description Required Pipeline
Input

blocks are different.

Process
Oprhans

Switch
Parameter

If you aremirroring files to the target during the
verification process with the synchronize option, this
option will delete orphaned files on the target.

false false

Connection
Id

ConnectionId
on page 230

Specify the connection ID returned from theGet-
DtConnectionIds cmdlet. SeeGet-DtConnectionIds
on page 36.

false false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-
DtJob cmdlet. The job information can be piped from
theGet-DtJob cmdlet and used in this cmdlet. See
Get-DtJob on page 43.

true true

Outputs
None

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Start-DtVerify -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -Synchronize -Newer -Checksum
-ProcessOrphans

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. Verification is
then started for the job. The connections for the server object are then closed.

Chapter 2 Cmdlets 170

Stop-DtJob
Stops a job

Syntax
Stop-DtJob [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Stop-DtJob [-ServiceHost] <Server> -JobInfo <JobInfo> [<CommonParameters>]

Detailed Description
This cmdlet stops the specified job.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Stop-DtJob -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable

Chapter 2 Cmdlets 171

DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The job is then
stopped. The connections for the server object are then closed.

Chapter 2 Cmdlets 172

Stop-DtMirror
Stops mirroring

Syntax
Stop-DtMirror [-ServiceHost] <Server> [-JobId] <Guid> [-ConnectionId <Guid>] [<CommonParameters>]

Stop-DtMirror [-ServiceHost] <Server> -JobInfo <JobInfo> [-ConnectionId <Guid>] [<CommonParameters>]

Detailed Description
This cmdlet stops mirroring on the specified job.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned from
theGet-DtJob cmdlet. See New-DtJob on page 100
andGet-DtJob on page 43.

true false

Connection
Id

ConnectionId
on page 230

Specify the connection ID returned from theGet-
DtConnectionIds cmdlet. SeeGet-DtConnectionIds on
page 36.

false false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-
DtJob cmdlet. The job information can be piped from
theGet-DtJob cmdlet and used in this cmdlet. See
Get-DtJob on page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Stop-DtMirror -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

Chapter 2 Cmdlets 173

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. Themirror is then
stopped for the job. The connections for the server object are then closed.

Chapter 2 Cmdlets 174

Stop-DtReplication
Stops replication

Syntax
Stop-DtReplication [-ServiceHost] <Server> [-JobId] <Guid> [-ConnectionId <Guid>] [<CommonParameters>]

Stop-DtReplication [-ServiceHost] <Server> -JobInfo <JobInfo> [-ConnectionId <Guid>]
[<CommonParameters>]

Detailed Description
This cmdlet stops replication on the specified job.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned from
theGet-DtJob cmdlet. See New-DtJob on page 100
andGet-DtJob on page 43.

true false

Connection
Id

ConnectionId
on page 230

Specify the connection ID returned from theGet-
DtConnectionIds cmdlet. SeeGet-DtConnectionIds on
page 36.

false false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-
DtJob cmdlet. The job information can be piped from
theGet-DtJob cmdlet and used in this cmdlet. See
Get-DtJob on page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Stop-DtReplication -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Chapter 2 Cmdlets 175

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. Replication is
then stopped for the job. The connections for the server object are then closed.

Chapter 2 Cmdlets 176

Stop-DtReplicationService
Stops the Double-Take service

Syntax
Stop-DtReplicationService [-ServiceHost] <Server> [<CommonParameters>]

Detailed Description
This cmdlet stops the Double-Take service on the specified server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost could be your source or target server.

true false

Outputs
None

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Stop-DtReplicationService -ServiceHost $DtServerObjectAlpha

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the Double-Take service is stopped on the
server. The connections for the server object are then closed.

Chapter 2 Cmdlets 177

Suspend-DtJob
Pauses a job

Syntax
Suspend-DtJob [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Suspend-DtJob [-ServiceHost] <Server> -JobInfo <JobInfo> [<CommonParameters>]

Detailed Description
This cmdlet paused a job. All jobs from the same source to the same IP address on the target will be paused.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Suspend-DtJob -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable

Chapter 2 Cmdlets 178

DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The job is then
suspended. The connections for the server object are then closed.

Chapter 2 Cmdlets 179

Suspend-DtMirror
Pauses mirroring

Syntax
Suspend-DtMirror [-ServiceHost] <Server> [-JobId] <Guid> [-ConnectionId <Guid>] [<CommonParameters>]

Suspend-DtMirror [-ServiceHost] <Server> -JobInfo <JobInfo> [-ConnectionId <Guid>] [<CommonParameters>]

Detailed Description
This cmdlet pauses mirroring.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned from
theGet-DtJob cmdlet. See New-DtJob on page 100
andGet-DtJob on page 43.

true false

Connection
Id

ConnectionId
on page 230

Specify the connection ID returned from theGet-
DtConnectionIds cmdlet. SeeGet-DtConnectionIds on
page 36.

false false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-
DtJob cmdlet. The job information can be piped from
theGet-DtJob cmdlet and used in this cmdlet. See
Get-DtJob on page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Suspend-DtMirror -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

Chapter 2 Cmdlets 180

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. Themirror for the
job is then paused. The connections for the server object are then closed.

Chapter 2 Cmdlets 181

Suspend-DtTarget
Pauses Carbonite processing

Syntax
Suspend-DtTarget [-ServiceHost] <Server> -All [<CommonParameters>]

Suspend-DtTarget [-ServiceHost] <Server> [-JobId] <Guid> [-ConnectionId <Guid>] [<CommonParameters>]

Suspend-DtTarget [-ServiceHost] <Server> -JobInfo <JobInfo> [-ConnectionId <Guid>] [<CommonParameters>]

Detailed Description
This cmdlet pauses Carbonite processing on the target. Incoming Carbonite data from the source will be queued
on the target. All active jobs to the target will complete the operations already in progress. Any new operations will
be queued on the target until the target is resumed. The data will not be committed until the target is resumed.
Pausing the target only pauses Carbonite processing, not the entire server.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

All Switch
Parameter

Execute the cmdlet on all jobs that are present true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned from
theGet-DtJob cmdlet. See New-DtJob on page 100
andGet-DtJob on page 43.

true false

Connection
Id

ConnectionId
on page 230

Specify the connection ID returned from theGet-
DtConnectionIds cmdlet. SeeGet-DtConnectionIds on
page 36.

false false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-
DtJob cmdlet. The job information can be piped from
theGet-DtJob cmdlet and used in this cmdlet. See
Get-DtJob on page 43.

true true

Outputs
ActivityToken on page 215

Chapter 2 Cmdlets 182

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Suspend-DtTarget -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. Carbonite
processing for the job is then paused. The connections for the server object are then closed.

Chapter 2 Cmdlets 183

Test-DtActiveDirectoryCredentials
Tests credentials against Active Directory

Syntax
Test-DtActiveDirectoryCredentials [-ServiceHost] <Server> [-Credential] <PSCredential> -ComputerDomain
<String> -ComputerName <String> [<CommonParameters>]

Test-DtActiveDirectoryCredentials [-ServiceHost] <Server> [-UserName] <String> [-Password] <String> -
ComputerDomain <String> -ComputerName <String> [<CommonParameters>]

Detailed Description
This cmdlet tests if the specified credentials have privileges to update Active Directory on the specified server's
domain.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost could be your source or
target server.

true false

Credential PSCredential
on page 313

Specify the credential object returned from the
Windows PowerShell Get-Credential cmdlet. This
password will not be visible becauseWindows stores
an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using
this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

false false

Computer
Domain

String Specify a domain name. true false

Computer
Name

String Specify a computer name. true false

UserName String Specify a user name. If you are using a domain, specify
domain\user name.

true false

Password String Specify the password associated with the user you
have entered. This password will be visible in plain text.

true false

Outputs
Boolean

Chapter 2 Cmdlets 184

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtCredentials = Get-Credential domain\administrator

Test-DtActiveDirectoryCredentials -ServiceHost $DtServerObjectAlpha -Credential $DtCredentials -
ComputerDomain "domain" -ComputerName "alpha"

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then you will be prompted for credentials for the
domain\administrator account and those credentials will be stored in the variable DtCredentials. Finally, the stored
credentials will be tested to see if they can update Active Directory on the specified domain and computer. The
connections for the server object are then closed.

Chapter 2 Cmdlets 185

Test-DtEmailNotification
Tests e-mail configuration

Syntax
Test-DtEmailNotification [-ServiceHost] <Server> [-Options] <EmailNotificationOptions> [-To] <String> [-Body]
<String> [<CommonParameters>]

Detailed Description
Tests the e-mail options configured with Set-DtEmailNotificationOptions by attempting to send an e-mail to the
specified recipient. See Set-DtEmailNotificationOptions on page 140

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on page 325 Specify the server object returned from the
New-DtServer cmdlet. See New-DtServer
on page 103. For this cmdlet, the -
ServiceHost could be your source or target
server.

true false

Options EmailNotificationOptions
on page 252

Specify the object returned from theGet-
DtEmailNotificationOptions cmdlet. See
Get-DtEmailNotificationOptions on page 41.

true false

To String Specify the e-mail address that the test
Carbonite e-mail message should be sent
to. Multiple addresses can be separated by
a comma.

true false

Body String Specify the text of the test Carbonite email
message.

true false

Outputs
None

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtEmailOptions = Get-DtEmailNotificationOptions -ServiceHost $DtServerObject

$DtEmailOptions.Enabled = $true

$DtEmailOptions.SmtpServer = "mail.company.com"

Set-DtEmailNotificationOptions -ServiceHost $DtServerObjectAlpha -Options $DtEmailOptions

Chapter 2 Cmdlets 186

Test-DtEmailNotification -ServiceHost $DtServerObjectAlpha -Options $DtEmailOptions -To
"administrator@mail.company.com" -Body "This is a test Carbonite message."

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the default Carbonite e-mail notification options
are stored in the variable DtEmailOptions. Two of the options are then changed. The Enabled option is set to true
which turns on the e-mail notification feature. The SMTP server is also configured for mail.company.com. Those
changes for the email notification options are set on the server. Finally a test message is sent to the
administrator@mail.company.com addresses with the specifiedmessage text using the configured e-mail
notification options. The connections for the server object are then closed.

Chapter 2 Cmdlets 187

Test-DtScript
Tests the specified script

Syntax
Test-DtScript [-ServiceHost] <Server> [-Path] <String> [[-Arguments] <String>] [[-InteractionMode]
<DesktopInteractionMode>] [<CommonParameters>]

Detailed Description
This cmdlet tests the specified script on the specified server using the credentials from Set-DtScriptCredentials
on page 148. If necessary, manually undo any changes that you do not want after testing the script.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on page 325 Specify the server object returned from the
New-DtServer cmdlet. See New-DtServer
on page 103. For this cmdlet, the -
ServiceHost could be your source or target
server.

true false

Path String Specify the full path and script name true false

Arguments String Specify any arguments that need to be
passed to the script.

false false

Interaction
Mode

DesktopInteractionMode
on page 388

Specify if the script processing will be
displayed on the screen, by using the value
Interact, or if the script will execute silently
in the background, by using the value None.

false false

Outputs
Int32

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Test-DtScript -ServiceHost $DtServerObjectAlpha -Path "C:\PathDir\ScriptName" -Arguments "arg1 arg2" -
InteractionMode Interact

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then the script called ScriptName (located in
C:\PathDir) is run, using the arguments arg1 and arg2. The script will display on screen. The connections for the
server object are then closed.

Chapter 2 Cmdlets 188

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Test-DtScript -ServiceHost $DtServerObjectAlpha -Path
"C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe" -Arguments "-File ""C:\my
scripts\myscript.ps1"" ""-Arg1 arg1 -Arg2 arg2"" -ExecutionPolicy RemoteSigned" -InteractionMode None

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then PowerShell is launched and the arguments
passed to PowerShell are the PowerShell script myscript.ps1 (located in C:\my scripts) and the arguments ars1
and arg2. The PowerShell execution policy is set to RemoteSigned so the PowerShell script will execute. The
script is set to run silently in the background. The connections for the server object are then closed.

Chapter 2 Cmdlets 189

Test-DtScriptCredentials
Tests credentials

Syntax
Test-DtScriptCredentials [-ServiceHost] <Server> [-Credential <PSCredential>] [<CommonParameters>]

Test-DtScriptCredentials [-ServiceHost] <Server> [-UserName] <String> [-Password] <String>
[<CommonParameters>]

Detailed Description
This cmdlet tests the specified credentials on the specified server to confirm if they have administrative rights

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost could be your source or
target server.

true false

Credential PSCredential
on page 313

Specify the credential object returned from the
Windows PowerShell Get-Credential cmdlet. This
password will not be visible becauseWindows stores
an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using
this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

false false

UserName String Specify a user name. If you are using a domain, specify
domain\user name.

true false

Password String Specify the password associated with the user you
have entered. This password will be visible in plain text.

true false

Outputs
Boolean

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

$DtCredentials = Get-Credential domain\administrator

Test-DtScriptCredentials -ServiceHost $DtServerObjectAlpha -Credential $DtCredentials

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

Chapter 2 Cmdlets 190

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then you will be prompted for credentials for the
domain\administrator account and those credentials will be stored in the variable DtCredentials. Finally, the
credentials will be tested to confirm if they have administrative rights on the server. The connections for the server
object are then closed.

Chapter 2 Cmdlets 191

Test-DtVmwareCertificatePolicy
Tests the VMware certificate policy

Syntax
Test-DtVmwareCertificatePolicy [-ServiceHost] <Server> [-VmwareServer] <String> [<CommonParameters>]

Detailed Description
This cmdlet tests to see if the current policy or any valid certificates will allow a connection the specified VMware
server. A true return indicates a connection can bemade. A false return includes an X509Certificate2 object which
can be used in the Install-DtVmwareCertificate on page 89 cmdlet. See X509Certificate2 Class at
https://msdn.microsoft.com/en-us/library/system.security.cryptography.x509certificates.x509certificate2
(v=vs.110).aspx on theMicrosoft MSDN web site for details on the object returned with a false test.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103.
For this cmdlet, the -ServiceHost should be your
target server.

true false

VmwareServer String Specify the name of the VMware server (ESX host or
vCenter) where the target server is located.

true false

Outputs
Boolean

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$TestResult = Test-DtVmwareCertificatePolicy -ServiceHost $DtServerObjectBeta -VmwareServer
112.47.15.6

Set-DtVmwareCertificatePolicy -ServiceHost $DtServerObjectBeta -VmwareServer 112.47.15.6 -Policy
AllowAll

Install-DtVmwareCertificate -ServiceHost $DtServerObjectBeta -Certificate $TestResult[1]

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The server $DTServerObjectBeta is tested to see if
the current policy or any valid certificates will allow a connection to the specified VMware server. In this example,
assume the return is false. The VMware certificate policy on the server $DTServerObjectBeta is then set to allow

Chapter 2 Cmdlets 192

https://msdn.microsoft.com/en-us/library/system.security.cryptography.x509certificates.x509certificate2(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.security.cryptography.x509certificates.x509certificate2(v=vs.110).aspx

all certificates to be installed. The certificate from the Test-DtVmwareCertificatePolicy false return is then
installed on the server $DTServerObjectBeta. The connections for the server object are then closed.

Chapter 2 Cmdlets 193

Undo-DtJobFailover
Starts undo failover

Syntax
Undo-DtJobFailover [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Undo-DtJobFailover [-ServiceHost] <Server> -JobInfo <JobInfo> [<CommonParameters>]

Detailed Description
This cmdlet starts the undo failover process for the specified job.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Undo-DtJobFailover -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable

Chapter 2 Cmdlets 194

DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The undo failover
process is then started. The connections for the server object are then closed.

Chapter 2 Cmdlets 195

Uninstall-DoubleTake
Uninstalls Carbonite

Syntax
Uninstall-DoubleTake [-RemoteServer] <Server> [-AsJob] [<CommonParameters>]

Detailed Description
This cmdlet uninstalls Carbonite on the specified server.

Parameters

Name Type Description Required Pipeline
Input

Remote
Server

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103.

true false

AsJob Switch
Parameter

Specify if you want the uninstallation to occur
asynchronously in the background, returning the
PowerShell command immediately. You can get the status
of each uninstallation using theWindows PowerShell Get-
Job command. Without this parameter, each uninstallation
specified will be executed synchronously and the current
activity of the current uninstallation will be displayed.

false false

Outputs
None

Examples

$DtServerObjectAlpha= New-DtServer -Name alpha -UserName domain\administrator -Password password

Uninstall-Doubletake -RemoteServer $DtServerObjectAlpha

Disconnect-DtServer -ServiceHost $DtServerObjectAlpha

A server object is created for the server alpha using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectAlpha. Then Carbonite is uninstalled from the server. The
connections for the server object are then closed.

Chapter 2 Cmdlets 196

Update-DtJobStatus
Updates jobs status

Syntax
Update-DtShares [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Update-DtShares [-ServiceHost] <Server> -JobInfo <JobInfo> [<CommonParameters>]

Detailed Description
This cmdlet forces a job status update immediately rather than waiting for the next scheduled poll. The default
polling interval is 3 seconds. ForWindows servers, a non-default registry setting can be created to change the
polling interval.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Update-DtJobStatus -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but

Chapter 2 Cmdlets 197

only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The jobs status
is then updated. The connections for the server object are then closed.

Chapter 2 Cmdlets 198

Update-DtShares
Updates shares

Syntax
Update-DtShares [-ServiceHost] <Server> [-JobId] <Guid> [<CommonParameters>]

Update-DtShares [-ServiceHost] <Server> -JobInfo <JobInfo> [<CommonParameters>]

Detailed Description
This cmdlet updates source share information on the target for the specified job.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103. For this cmdlet,
the -ServiceHost should be your target server.

true false

JobId Guid on
page 271

Specify the job GUID returned from the New-DtJob cmdlet
or the Id within the job information returned from theGet-
DtJob cmdlet. See New-DtJob on page 100 andGet-DtJob
on page 43.

true false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-DtJob
cmdlet. The job information can be piped from theGet-
DtJob cmdlet and used in this cmdlet. SeeGet-DtJob on
page 43.

true true

Outputs
ActivityToken on page 215

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

Update-DtShares -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable

Chapter 2 Cmdlets 199

DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. Shares are then
updated on the target for the job. The connections for the server object are then closed.

Chapter 2 Cmdlets 200

Wait-DtConfirmJobOptions
Waits for the job validation process to complete

Syntax
Wait-DtConfirmJobOptions [-ServiceHost] <Server> -Token <ActivityToken> [-Any] [-Timeout <Int32>]
[<CommonParameters>]

Detailed Description
This cmdlet waits for the job validation process triggered by Confirm-DtJobOptions on page 25 to complete before
processing any additional cmdlets.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

Token ActivityToken
on page 215

Specify the confirm action object returned from the
Confirm-DtJobOption cmdlet. See Confirm-
DtJobOptions on page 25.

true false

Any Only wait for the first validation to finish before
continuing

false false

Timeout Int32 Specify the length of time, in seconds, to wait for the
process to complete. For example, 120 would wait two
minutes and then the next cmdlet would processed. If
you set the timeout to zero (0), there is no timeout delay
and the next cmdlet is immediately processed. If you
do not specify a timeout parameter, the timeout will
default to forever.

false false

Outputs
VerificationStep on page 354

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

$DtValidation = Confirm-DtJobOptions -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -

Chapter 2 Cmdlets 201

JobOptions $DtJob.Options

Wait-DtConfirmJobOptions -ServiceHost $DtServerObjectBeta -Token $DtValidation

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. The job options
used by the job are confirmed, and the validation result is stored in DtValidation. The script then waits until the
validation is complete before continuing. The connections for the server object are then closed.

Chapter 2 Cmdlets 202

Wait-DtMirrorComplete
Waits for themirroring process to complete

Syntax
Wait-DtMirrorComplete [-ServiceHost] <Server> [-JobId] <Guid> [-PollingInterval <Int32>] [-ConnectionId
<Guid>] [<CommonParameters>]

Wait-DtMirrorComplete [-ServiceHost] <Server> -JobInfo <JobInfo> [-PollingInterval <Int32>] [-ConnectionId
<Guid>] [<CommonParameters>]

Detailed Description
This cmdlet waits for themirroring process to complete before processing any additional cmdlets.

Parameters

Name Type Description Required Pipeline
Input

Service
Host

Server on
page 325

Specify the server object returned from the New-
DtServer cmdlet. See New-DtServer on page 103. For
this cmdlet, the -ServiceHost should be your target
server.

true false

JobId Guid on page
271

Specify the job GUID returned from the New-DtJob
cmdlet or the Id within the job information returned from
theGet-DtJob cmdlet. See New-DtJob on page 100
andGet-DtJob on page 43.

true false

Polling
Interval

Int32 Specify the amount of time, in hh:mm:ss, to wait
before checking to see if themirror has completed.

false false

Connection
Id

ConnectionId
on page 230

Specify the connection ID returned from theGet-
DtConnectionIds cmdlet. SeeGet-DtConnectionIds on
page 36.

false false

JobInfo JobInfo on
page 274

Specify the job information returned from theGet-
DtJob cmdlet. The job information can be piped from
theGet-DtJob cmdlet and used in this cmdlet. See
Get-DtJob on page 43.

true true

Outputs
MirrorState on page 412

Examples

$DtServerObjectBeta = New-DtServer -Name beta -UserName domain\administrator -Password password

Chapter 2 Cmdlets 203

$DtJobForAlpha = Get-DtJob -ServiceHost $DtServerObjectBeta |Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

$DtMirrorChecksum = New-Object DoubleTake.Core.Contract.Connection.MirrorParameters

$DtMirrorChecksum.ComparisonCriteria = "Checksum"

$DtMirrorChecksum.Options = "Synchronize,CalculateDifferences"

Start-DtMirror -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -MirrorParameters
$DtMirrorChecksum

Wait-DtMirrorComplete -ServiceHost $DtServerObjectBeta -JobId $DtJobForAlpha.Id -PollingInterval
"00:05:00"

Disconnect-DtServer -ServiceHost $DtServerObjectBeta

A server object is created for the server beta using the domain\administrator and password credentials. It assigns
the server object to the variable called DtServerObjectBeta. The job(s) are retrieved from DtServerObjectBeta, but
only the job information where the sourcemachine name is equivalent to the name stored in the variable
DtServerObjectAlpha is retrieved. That information is then stored in the variable DtJobForAlpha. Themirror
options are stored in DtMirrorChecksum. The ComparisonCriteria value is changed to checksum and theOptions
are set to Synchronize and CalculateDifferences. Then themirror is started for the job using the storedmirroring
options. The script will wait for mirroring to complete before continuing. The script will check ever fiveminutes to
see if mirroring is complete. The connections for the server object are then closed.

Chapter 2 Cmdlets 204

Chapter 3 Classes
The following classes are used in Carbonite.

l ActivationAttribute on page 209
l ActivationCode on page 210
l ActivationInformation on page 212
l ActivationStatus on page 213
l ActivityStatusEntry on page 214
l ActivityToken on page 215
l ApplicationOptions on page 216
l BandwidthEntry on page 218
l BandwidthLimit on page 219
l BandwidthOptions on page 220
l BandwidthSchedule on page 221
l BandwidthScheduleEntry on page 222
l BandwidthSpecification on page 223
l ChangedItems on page 224
l CloudOptions on page 225
l ClusterFilesAndFoldersQualifcationResults on page 226
l ClusterOptions on page 227
l CompressionLevel on page 229
l ConnectionId on page 230
l ConnectionSchedule on page 231
l ConnectionStartParameters on page 232
l CoreConnectionDetails on page 234
l CoreConnectionOptions on page 238
l CoreMonitorDetails on page 239
l CoreMonitorOptions on page 240
l CoreQualificationResults on page 241
l Credentials on page 243
l CutoverDetails on page 244
l DeleteOptions on page 245
l Disk on page 246
l DiskOptions on page 247
l DnsDomainDetails on page 249
l DnsOptions on page 250
l DnsServerDetail on page 251
l EmailNotificationOptions on page 252
l EngineControlStatus on page 254
l EventLogEntry on page 256

Chapter 3 Classes 205

l EventLogEntryType on page 257
l ExtendedLowLevelStates on page 258
l FailbackOptions on page 259
l FailoverOptions on page 260
l FailoverReport on page 261
l FailoverScriptConfiguration on page 263
l Feature on page 265
l FilesAndFoldersOptions on page 266
l FullServerFailoverOptions on page 267
l FullServerJobDetails on page 268
l FullServerNicMappings on page 269
l FullServerTestFailoverOptions on page 270
l Guid on page 271
l IpAddressMap on page 272
l JobAction on page 273
l JobInfo on page 274
l JobOptions on page 277
l JobQualificationResults on page 280
l JobStatistics on page 281
l JobStatus on page 282
l LogicalItems on page 284
l LogicalVolume on page 285
l LogMessage on page 288
l LvmOptions on page 289
l MachineInfoClass on page 290
l MirrorParameters on page 291
l MonitorConfiguration on page 292
l MonitoredAddressConfiguration on page 294
l MonitoredAddressStatus on page 295
l MonitoringOptions on page 296
l NetworkInterfaceInfo on page 297
l OperatingSystemInfo on page 298
l OperatingSystemVersion on page 299
l OrphansSchedule on page 300
l Partition on page 301
l PathBlocking on page 302
l PathTransformation on page 303
l PhysicalItem on page 304
l PhysicalRule on page 306
l PhysicalVolume on page 307
l ProductInfo on page 310

Chapter 3 Classes 206

l ProductVersion on page 312
l PSCredential on page 313
l RecommendedFailbackOptions on page 314
l RecommendedFailoverOptions on page 315
l RecommendedJobOptions on page 316
l RecommendedRestoreOptions on page 317
l RepairStatus on page 318
l ReplicaVmInfo on page 319
l RestoreOptions on page 321
l RestoreParameters on page 322
l ReverseOptions on page 323
l ScriptPoint on page 324
l Server on page 325
l ServerActivationInformation on page 327
l ServerInfo on page 328
l ServerQualificationResults on page 331
l ServiceInformation on page 332
l ServiceMonitoringOptions on page 333
l SnapshotAdvancedOptions on page 334
l SnapshotEntry on page 335
l SnapshotMonitorOptions on page 336
l SnapshotSchedule on page 337
l SnapshotSize on page 338
l SourceQueueSnapshotEntry on page 339
l SystemStateOptions on page 340
l TargetFileServerQualificationResults on page 342
l TargetServicesOptions on page 343
l TargetServicesToStop on page 344
l TargetStateInfo on page 345
l TaskParameters on page 347
l TestFailoverOptions on page 348
l TestFailoverServerCredentials on page 349
l TimeClass on page 350
l UnicastIPAddressInfo on page 351
l UnmanagedConnectionOptions on page 352
l VerificationStatus on page 353
l VerificationStep on page 354
l VerifySchedule on page 355
l VirtualNetworkInterfaceInfo on page 356
l VirtualSwitchInfo on page 358
l VirtualSwitchMapping on page 359

Chapter 3 Classes 207

l VmInfo on page 360
l Volume on page 361
l VolumeGroup on page 363
l VolumeOptions on page 364
l VolumeQualificationResults on page 367
l VRAOptions on page 368
l VRAQualificationResults on page 371
l VRAWorkloadCustomizationOptions on page 372
l Workload on page 373
l WorkloadSupportSummary on page 375
l WorkloadType on page 376

Chapter 3 Classes 208

ActivationAttribute

Parameter of
ActivationCode on page 210

Properties
Name Type Description

Name String This value is the name of the license key attribute.

Value Int64 This value is the numeric value associated with the license key
attribute.

Chapter 3 Classes 209

ActivationCode

Parameter of
ActivationStatus on page 213

Properties
Name Type Description

Attributes ActivationAttribute [] on page 209 This value represents the attributes of the license.

Code String This value is a 24 character, alpha-numeric key which applies
the appropriate license to the server.

ExpirationDate DateTime The value is the license expiration date.

IsEvaluation Boolean This value is true if the license key is an evaluation license;
otherwise, it is false.

IsExpired Boolean This value is true if the license is expired; otherwise, it is false.

IsNodeLocked Boolean This value is true if the license key must be activated;
otherwise, it is false.

IsValid Boolean This value is true if the license key is valid; otherwise, it is
false.

LicenseType LicenseType on page 409 This value represents the type of license.

MajorVersion Int32 This value is themajor version of the release associated with
this license.

MinorVersion Int32 This value is theminor version of the release associated with
this license.

ProductCode Int32 This value is the product code associated with this license.

Chapter 3 Classes 210

Name Type Description

ProductName String This value is the product name associated with this license.

SerialNumber Int32 This value is the serial number associated with this license.

Chapter 3 Classes 211

ActivationInformation

Returned by
Request-DtOnlineActivation on page 123

Properties
Name Type Description

ActivationKey String This value is the activation key.

Code String This value is the activation key.

EmailAddress String This value is the email address to register the activation key.

Error String This value is the text for any error messages from the activation
process.

Quantity Int32 This value is the quantity associated with the license.

ServiceHost Server on page 325 This value is a server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103.

ServerName String This value is the name of the server.

ServerInformation String This value is the unique server information used to generate the
activation key for this particular server.

Chapter 3 Classes 212

ActivationStatus

Returned by
Get-DtActivationStatus on page 32, Set-DtActivationCode on page 136

Properties
Name Type Description

AddOnCodes ActivationCode [] on page 210 This value represents the current add-on licenses on this
server.This property is no longer used.

Codes ActivationCode [] on page 210 This value represents the current licenses on this server.

IsNodeLocked Boolean This value is true if the license key must be activated;
otherwise, it is false.

IsValid Boolean This value is true if the license key is valid; otherwise, it is
false.

Chapter 3 Classes 213

ActivityStatusEntry

Returned by
Get-DtJobActionStatus on page 45

Parameter of
RepairStatus on page 318, VerificationStatus on page 353

Properties
Name Type Description

Duration TimeSpan This value is the duration of the activity.

MessageFormatParameters String This value is themessage format parameters.

MessageId String This value is themessage resource ID.

RequesterUserName String The requester is the user who initiated the activity.

Status ActivityCompletionStatus on page 383 This value represents if or how the activity completed.

TimeStamp DateTimeOffset This value is the time stamp for the activity.

Token ActivityToken on page 215 This value is a unique identifier for the request.

Chapter 3 Classes 214

ActivityToken

Returned by
Checkpoint-DtConnection on page 20, Confirm-DtJobOptions on page 25, Edit-DtJob on page 29, Invoke-DtQueueTask on page 92, Remove-DtJob on
page 112, Remove-DtSnapshot on page 116, Repair-DtJobOptions on page 120, Resume-DtJob on page 127, Resume-DtMirror on page 129, Resume-
DtTarget on page 131, Start-DtJob on page 153, Start-DtJobFailback on page 155, Start-DtJobFailover on page 157, Start-DtJobRestore on page 159,
Start-DtJobReverse on page 161, Start-DtMirror on page 163, Start-DtOrphansProcessing on page 165, Start-DtReplication on page 167, Start-DtVerify
on page 169, Stop-DtJob on page 171, Stop-DtMirror on page 173, Stop-DtReplication on page 175, Suspend-DtJob on page 178, Suspend-DtMirror on
page 180, Suspend-DtTarget on page 182, Undo-DtJobFailover on page 194, Update-DtJobStatus on page 197, Update-DtShares on page 199

Parameter of
ActivityStatusEntry on page 214, Get-DtVerificationStatus on page 81, Wait-DtConfirmJobOptions on page 201

Properties
Name Type Description

ActivityNameFormatParameters String This value is the activity format parameters.

ActivityNameId String This value is the name of the activity.

Id Guid This value is the unique ID of the activity.

Chapter 3 Classes 215

ApplicationOptions

Parameter of
JobOptions on page 277

Properties
Name Type Description

AagInstances String This value is the instance name corresponding to the
SQL AlwaysOn Availability Group Server. This value should
never contain more than one entry.

DnsRecordLocks DnsRecordLock Do not use this property. Carbonite uses it internally.

IsAag Boolean Do not use this property. Carbonite uses it internally.

MonitoredServiceRepeatCount Int32 This property is no longer used.
SeeMonitoringOptions on page 296.ServiceMonitoringOptions
on page 333.

MonitoredServices ServiceInformation This property is no longer used.
SeeMonitorConfiguration on page 292.ScriptMonitorName.

MonitorScript String This property is no longer used.

See CoreMonitorOptions on page 240.MonitorConfiguration on
page 292.ScriptMonitorName.

RestartService Boolean This property is no longer used.
SeeMonitoringOptions on page 296.ServiceMonitoringOptions
on page 333.

SourceDomain String This value is the source server's primary domain.

SourceName String This value is the name of the source server.

Chapter 3 Classes 216

Name Type Description

TargetDomain String This value is the target server's primary domain.

TargetName String This value is the name of the target server.

TestPostFailoverScript String This value is the path and name of the script to run after the
target is brought online during a test failover.

TestPostFailoverScriptArguments String This value is the arguments for the TestPostFailoverScript to
run.

TestPreFailbackScript String This value is the path and name of the script to run before
failing back after a test failover.

TestPreFailbackScriptArguments String This value is the arguments for the TestPreFailbackScript.

Chapter 3 Classes 217

BandwidthEntry

Parameter of
BandwidthOptions on page 220

Properties
Name Type Description

DaysOfWeek Weekdays on page 437 This values is the days of the week to which the entry applies.

EndTime DateTime This value is the end time of the entry. It should be between
00:00:00 and 23:59:59 (hh:mm:ss). This value is only applicable
if the BandwidthOptions on page 220.BandwidthScheduleMode
on page 385 is Scheduled.

EntryType BandwidthEntryType on page 384 This value represents a daytime or overnight schedule.

IsUnlimited Boolean This value is true if the entry allows unlimited bandwidth;
otherwise, it is false.

Limit Int64 This value is the bandwidth limit in bytes per second.

Name String This value is the name of the entry. It must be unique among all
entries in the bandwidth schedule.

StartTime DateTime This value is the start time of the entry. It should be between
00:00:00 and 23:59:59 (hh:mm:ss).

Chapter 3 Classes 218

BandwidthLimit

Returned by
Get-DtBandwidthLimit on page 34

Parameter of
Set-DtBandwidthLimit on page 138

Properties
Name Type Description

Limit Int64 This value is the bandwidth limit in bytes per second.

Mode BandwidthScheduleMode on page 385 This value is the bandwidth limitingmode.

Chapter 3 Classes 219

BandwidthOptions

Parameter of
JobOptions on page 277

Properties
Name Type Description

Entries BandwidthEntry [] on page 218 This value represents the bandwidth schedule.

This value is copied to
CoreConnectionOptions.ConnectionStartParameters.Schedule.Bandwidth.Entries.

Limit Int64 This value is the bandwidth limit in bytes per second.

Mode BandwidthScheduleMode on
page 385

This value is the bandwidth limitingmode.

This value is copied to
CoreConnectionOptions.ConnectionStartParameters.Schedule.Bandwidth.Mode.

Specifications BandwidthSpecification [] on
page 223

This value represents a bandwidth specifications as identified by a common name (for
example T1) and a numeric speed (for example, 193,000 bytes per second).

This value is copied to
CoreConnectionOptions.ConnectionStartParameters.Schedule.Bandwidth.Specification.

Chapter 3 Classes 220

BandwidthSchedule

Parameter of
ConnectionSchedule on page 231

Properties
Name Type Description

Current BandwidthScheduleEntry [] on page
222

This value is the current bandwidth schedule entry being used.

Entries BandwidthScheduleEntry [] on page
222

This value represents the bandwidth schedule.

This value is copied from BandwidthOptions.Entries.

Mode BandwidthScheduleMode on page 385 This value is the bandwidth limitingmode.

This value is copied from BandwidthOptions.Mode.

Specifications BandwidthSpecification [] on page 223 This value represents a bandwidth specifications as identified
by a common name (for example T1) and a numeric speed (for
example, 193,000 bytes per second).

This value is copied from BandwidthOptions.Specification.

Chapter 3 Classes 221

BandwidthScheduleEntry

Parameter of
BandwidthSchedule on page 221

Properties
Name Type Description

DaysOfWeek Weekdays on page 437 This values is the days of the week to which the entry applies.

IsUnlimited Boolean This value is true if the entry allows unlimited bandwidth;
otherwise, it is false.

Limit Int64 This value is the bandwidth limit in bytes per second.

Name String This value is the name of the entry. It must be unique among all
entries in the bandwidth schedule.

StartTime DateTime This value is the start time of the entry. It should be between
00:00:00 and 23:59:59 (hh:mm:ss).

Chapter 3 Classes 222

BandwidthSpecification

Parameter of
BandwidthOptions on page 220, BandwidthSchedule on page 221

Properties
Name Type Description

Key String This value is a common name that represents a bandwidth
specifications, for example T1.

Type BandwidthSpecificationType on page
386

This value represents the bandwidth specification associated
with the type of network (LAN orWAN).

Value Int64 This value is the bandwidth limit in bytes per second.

Chapter 3 Classes 223

ChangedItems

Returned by
Add-DtPhysicalRule on page 16, Remove-DtPhysicalRule on page 114, Set-DtLogicalItemSelection on page 143

Parameter of
Add-DtPhysicalRule on page 16, Add-DtUvraPhysicalRule on page 18, Remove-DtPhysicalRule on page 114

Properties
Name Type Description

LogicalItems LogicalItems [] on page 284 This value represents the logical items that changed.

LogicalRules String [] This value is the current logical rules of the workload.

PhysicalItems PhysicalItem [] on page 304 This value represents the physical items that changed.

PhysicalRules PhysicalRule [] on page 306 This value represents the current physical rules of the
workload.

Chapter 3 Classes 224

CloudOptions

Parameter of
JobOptions on page 277

Properties
Name Type Description

EngineJobType EngineJobType on page 390 This value is the job type according to the replication engine.
(These jobs are not the same as JobInfo on page
274.JobType.)

HardLinkLogPath String This value is the path for the hard link processing log / report.

Chapter 3 Classes 225

ClusterFilesAndFoldersQualifcationResults

Parameter of
JobQualificationResults on page 280

Properties
Name Type Description

TargetFileServerQualificationResults TargetFileServerQualificationResults on
page 342

This value represents target configuration information for
clustered files and folders jobs.

TargetGroupDiskOffline Boolean This value is true if the disk resource in the target cluster
group is offline; otherwise, it is false.

Chapter 3 Classes 226

ClusterOptions

Parameter of
JobOptions on page 277

Properties
Name Type Description

DependOnResources String This value is the dependent resources.

InitializeOnTargetNodeMove Boolean Do not use this property. Carbonite uses it internally.

OriginalSourceClusterId String This value is the unique ID of the source cluster.

SkipSourceResourceShutdownOnLiveFailover Boolearn This property is no longer used.

See FailoverOptions on page 260.

SourceClusterName String This value is the name of the source cluster.

SourceGroupName String The value is the name of the source group.

SourceIsCluster Boolean This value is true if the source is a cluster; otherwise, it is
false.

TargetClusterName String This value is the name of the target cluster.

TargetClusterResourceNamePrefix String This value is the optional name of the target cluster resource
prefix.

TargetClusterStoragePath String This value is the location of the target cluster storage.

TargetGroupName String This value is the name of the target group.

TargetIsCluster Boolean This value is true if the target is a cluster; otherwise, it is
false.

TargetResourceGroupName String This values overrides the default group namewhen creating

Chapter 3 Classes 227

Name Type Description

the target resource.

TargetVirtualServers String This value is the name of the target virtual servers.

Chapter 3 Classes 228

CompressionLevel

Parameter of
ConnectionStartParameters on page 232, CoreQualificationResults on page 241, RestoreParameters on page 322

Properties
Name Type Description

Algorithm Int32 The algorithm and level properties are used together in the
following combinations.

l Disabled—Compression is disabled if the level equals -
1. The algorithm value is ignored when level equals -1.

l Low compression—Compression is enabled at a low
level if level equals 0 and algorithm equals 10.

l Medium compression—Compression is enabled at a
medium level if level equals 1 and algorithm equals 21.

l High compression—Compression is enabled at a high
level if level equals 2 and algorithm equals 31.

Level Int32

Chapter 3 Classes 229

ConnectionId

Returned by
Get-DtConnectionIds on page 36

Parameter of
Get-DtBandwidthLimit on page 34, Invoke-DtQueueTask on page 92, Remove-DtSnapshot on page 116, Resume-DtMirror on page 129, Resume-
DtTarget on page 131, Set-DtBandwidthLimit on page 138, Start-DtMirror on page 163, Start-DtOrphansProcessing on page 165, Start-DtReplication on
page 167, Start-DtVerify on page 169, Stop-DtMirror on page 173, Stop-DtReplication on page 175, Suspend-DtMirror on page 180, Suspend-DtTarget on
page 182, Wait-DtMirrorComplete on page 203

Properties
Name Type Description

Key String This value is the description of the associated connection ID.

Value Guid This value is a unique ID of a connection associated with a job.

Chapter 3 Classes 230

ConnectionSchedule

Parameter of
ConnectionStartParameters on page 232

Properties
Name Type Description

Archive None This property is no longer used.

Bandwidth BandwidthSchedule on page 221 This value represents the bandwidth schedule.

Orphans OrphansSchedule on page 300 This value represents if orphan files (files in the target path
location that are not present on the source) will be deleted.
There is currently no schedule (time-related options) for orphan
files. They can only be deleted or left on the target.

Transmission None This property is no longer used.

Verify VerifySchedule on page 355 This value represents the verification schedule.

Chapter 3 Classes 231

ConnectionStartParameters

Parameter of
CoreConnectionOptions on page 238

Properties
Name Type Description

ArchiveBinLocation String This property is no longer used.

CompressionLevel CompressionLevel on page 229 This value represents the compression to use for data passed
over the connection.

IsEncrypted Boolean This value is true if the connection data is to be encrypted;
otherwise, it is false.

IsMirrorEnabled Boolean This value is true if a mirror is started when the connection is
created; otherwise, it is false.

IsPathBlockingEnabled Boolean This value is true if the destination paths on the target are
blocked for writing, except by Carbonite; otherwise, it is false.

IsReplicationEnabled Boolean This value is true if replication is started when the connection
is created; otherwise, it is false.

IsRestore Boolean This value is true if the connection is a restorationmirror;
otherwise, it is false.

MirrorParameters MirrorParameters on page 291 This value represents themirror parameters used for the
connection. If this value is null, the default mirror parameters
will be used.

Schedule ConnectionSchedule on page 231 This value represents the bandwidth, orphans, and verification
schedule. These schedule settings will be applied to all
connections that share the same route to the same target.
Therefore, if a connection exists over the same route to the

Chapter 3 Classes 232

Name Type Description

same target as the connection you are creating, any schedule
changes will be applied to that connection as well.

ScriptPoints ScriptPoint [] on page 324 This value represents the scripts to be run at specific points
duringmirroring.

SnapshotSchedule SnapshotSchedule on page 337 This value represents the snapshot schedule for the target.

Chapter 3 Classes 233

CoreConnectionDetails

Parameter of
FullServerJobDetails on page 268, JobStatistics on page 281

Properties
Name Type Description

BandwidthCollar Int32 This value is the current bandwidth limit. It may vary according
to the bandwidth limit schedule.

CompressionEnabled Boolean This value is true if compression is enabled; otherwise, it is
false.

CompressionLevel Int32 This value is the current compression level.

ConnectionId Int32 This value is the ID assigned to the connection. The ID is a
one-based index that resets each time the Double-Take
service is restarted.

CurrentTime DateTimeOffset This value is the time the connection detail was retrieved.

DiskQueueBytes Int64 This value is the number of bytes queued on the target.

Encrypted Boolean This value is true if Carbonite is encrypting data before
sending it to the target; otherwise, it is false.

InitialMirrorComplete Boolean This value is true if the initial mirror has completed; otherwise,
it is false.

ManagedConnectionId Guid This value is the ID assigned to the connection by the
Management Service.

MirrorBytesRemaining Int64 This value is the number of remainingmirror bytes.

MirrorBytesSent Int64 This value is the number of mirror bytes sent.

Chapter 3 Classes 234

Name Type Description

MirrorBytesSkipped Int64 This value is the number of mirror bytes skipped. Bytes are
skipped because the data is not different on the source and
target.

MirrorBytesTransmitted Int64 The value is the number of mirror bytes transmitted.

MirrorEndTime DateTimeOffset This value is the time whenmirroring ended.

MirrorOpsQueued Int64 This value is the number of mirror operations queued on the
target.

MirrorPermillage Int16 This value is the percentage of themirror that is complete. A
mirror may be at 99-100% when it is actually still processing .
For example, this may occur if files were added after the
protected data set size was calculated or if there are alternate
data streams in the protected data set.

MirrorStartTime DateTimeOffset This value is the time whenmirroring started.

MirrorState MirrorState on page 412 This value represents the state of mirroring.

PeerMemoryLow Boolean This value is true if memory on the target is low; otherwise it is
false.

ReplicationBytesQueued Int64 This value is the number of replication bytes queued on the
target.

ReplicationBytesSent Int64 This value is the number of replication bytes sent.

ReplicationBytesTransmitted Int64 The value is the number of replication bytes transmitted.

ReplicationOpsQueued Int64 This value is the number of replication operations queued on
the target.

ReplicationSetCalcInProgress Boolean This value is true if the size of the protected data set is being
calculated; otherwise, it is false. Mirroring will start while the
size of the protected data set is being determined. While the
calculation is in progress, the remaining byte count is not valid.

Chapter 3 Classes 235

Name Type Description

ReplicationState ReplicationState on page 420 This value represents the state of replication.

Restoring Boolean This value is true if the connection is restoring data; otherwise,
it is false.

SourceAccessLevel AccessLevel on page 380 This value is the source security access. This value will be
null if the Carbonite access level cannot be determined. If the
value is not null and SourceAvailable is false, Carbonite can
connect to the source but was not able to determine at least
Carbonite monitor access with the provided credentials.

SourceAvailable Boolean This value is true if the target can communicate with the
source; otherwise, it is false.

SourceClusterResourceState ClusterResourceState on page 387 This value represents the state of the source cluster resource.

SourceEndpoint String This value is the source endpoint that is the route from the
target back to the source.

SourceEngineAvailable Boolean This value is true if the source replication engine is available;
otherwise, it is false.

SourceMachineName String This value is the name of the source server.

SourceRecoveryPointLatency Int64 This value is the length of time replication is behind on the
target compared to the source. This is the time period of data
that would be lost if a failure were to occur at the current time.

SourceRecoveryPointTime DateTimeOffset This value is the time that replication is synchronized between
the source and target. The difference between the current time
and this time is the time period of data that would be lost if a
failure were to occur at the current time.

SourceUniqueId String This value is a unique ID assigned to the source.

StartTime DateTimeOffset This value is the time the connection was started.

Chapter 3 Classes 236

Name Type Description

TargetAccessLevel AccessLevel on page 380 This value is the target security access. This value will be null
if the Carbonite access level cannot be determined. If the
value is not null and TargetAvailable is false, Carbonite can
connect to the target but was not able to determine at least
Carbonite monitor access with the provided credentials.

TargetAvailable Boolean This value is true if the target is available; otherwise, it is false.

TargetEngineAvailable Boolean This value is true if the target replication engine is available;
otherwise, it is false.

TargetLoaded Boolean This value is true if the Carbonite target module is loaded on
the server; otherwise, it is false.

TargetMachineName String This value is the name of the target server.

TargetQueueBytes Int64 This value is the number of bytes in the target queue.

TargetRoute String This value is the endpoint on the target that is the route the
source is using for the connection.This route is in the format
[address]:[port].

TargetState TargetStates on page 433 This value represents the state of the target.

TargetUniqueId String This value is a unique ID assigned to the target.

TotalBytesSent Int64 This value is the total number of bytes that have been sent for
the connection.

TotalBytesTransmitted Int64 This value is the total number of bytes that have been
transmitted for the connection.

TotalOpsQueued Int64 This value is the total number of operations queued on the
target.

TransmissionMode TransmissionMode on page 435 This value represents the state of data transmission from the
source to the target.

Chapter 3 Classes 237

CoreConnectionOptions

Parameter of
JobOptions on page 277

Properties
Name Type Description

ConnectionStartParameters ConnectionStartParameters on page
232

This value represents the parameters used to start the
connection between the source and target.

PathTransformations PathTransformation [] on page 303 This value represents where the source protected data will be
located on the target.

TargetAddress String This value is the target IP address.

TargetEnginePort Int32 This value is the port where the engine is listening.

Chapter 3 Classes 238

CoreMonitorDetails

Parameter of
JobStatistics on page 281

Properties
Name Type Description

HighAvailabilityState HighAvailabilityState on page 404 This value represents the state of failover monitoring.

MonitoredAddressStatuses MonitoredAddressStatus [] on page
295

This value represents the status of amonitored IP address.

MonitorId Guid This value is a unique ID for this failover monitor.

MonitorName String This value is the name for this failover monitor.

RestoreStates RestoreStates on page 422 This value represents the state of a restoration connection.

TargetAvailable Boolean This value is true if the target is available; otherwise, it is
false.

Chapter 3 Classes 239

CoreMonitorOptions

Parameter of
FailbackOptions on page 259, JobOptions on page 277

Properties
Name Type Description

MonitorConfiguration MonitorConfiguration on page 292 This value represents the configuration of failover monitoring.

ShouldPerformLanFailover Boolean This value is for display in the console to determine which
failover option should be selected by default.

SourceDomain String This value is the name of the source domain.

SourceServer String This value is the name of the source server.

TargetDomain String This value is the name of the target domain.

TargetServer String This value is the name of the target server.

TotalTimeAllowed TimeSpan This value is the amount of time allowed without a successful
ping before a failover condition is met.

UseTotalTimeAllowed Boolean This value is true if TotalTimeAllowed is used to determine
when a failover condition is met; otherwise, it is false.

Chapter 3 Classes 240

CoreQualificationResults

Parameter of
JobQualificationResults on page 280

Properties
Name Type Description

CompressionLevels CompressionLevel [] on page 229 This value is the compression level. It will be null if there is a
problem getting the compression level from the source or
target.

DefaultAllToOneBasePath String This value sets the default base path for the all to one path
mapping, which configures the source replica data to be stored
on a single volume on the target. The default is \source_
name\volume_name. If you are protectingmultiple volumes on
the source, each volumewould be stored on the same volume
on the target. For example, C:\data and D:\files for the source
Alpha would be stored in D:\alpha\C and D:\alpha\D,
respectively.

SourceEnginePort Int32 This value is the port where the engine is listening.

SourceIPAddresses UnicastIPAddressInfo [] on page 351 This value represents the available IP addresses on the
source.

SourceMachineName String This value is the name of the source server.

SourceNetworkId String This value is the source network ID used to communicate with
the source from the target.

SourceNetworkInterfaces NetworkInterfaceInfo [] on page 297 This value represents the available NICs on the source.

SourceProductInfo ProductInfo on page 310 This value represents the Carbonite product info on the source.

SourceVolumes Volume [] on page 361 This value represents the available volumes on the source.

Chapter 3 Classes 241

Name Type Description

TargetEnginePort Int32 This value is the port where the engine is listening.

TargetIPAddresses UnicastIPAddressInfo [] on page 351 This value represents the available IP addresses on the target.
These IP addresses are the possible values that can be used
to populate CoreConnectionOptions on page
238.TargetAddress.

TargetMachineName String This value is the name of the target server.

TargetNetworkInterfaces NetworkInterfaceInfo [] on page 297 This value represents the available NICs on the target.

TargetProductInfo ProductInfo on page 310 This value represents the Carbonite product info on the target.

TargetVolumes Volume [] on page 361 This value represents the available volumes on the target.

Chapter 3 Classes 242

Credentials

Parameter of
DnsDomainDetails on page 249, EmailNotificationOptions on page 252, MonitorConfiguration on page 292, Server on page 325

Properties
Name Type Description

Domain String This value is the name of the domain.

Password String This value is the password.

UserName String This value is the name of the user.

Chapter 3 Classes 243

CutoverDetails

Parameter of
FullServerJobDetails on page 268

Properties
Name Type Description

PercentComplete Int32 This value is the percentage of the cutover that is complete.

State Int32 This value is the state of the cutover. If this value is 1, the
cutover is idle. If this value is 1000, the cutover processing is
complete. Negative numbers are error codes.

Chapter 3 Classes 244

DeleteOptions

Returned by
Get-DtUvraRecommendedRemoveOptions on page 79

Properties
Name Type Description

DeleteOnClusterResourceOffline Boolean This value is true if the job is deleted because the target cluster
resource went offline; otherwise, it is false.

DeleteReplica Boolean This value is true if the replica virtual machine should be
deleted when the job is deleted; otherwise, it is false.

DiscardTargetQueue Boolean This value is true if any operations in the target queue should
be deleted when the job is deleted; otherwise, it is false.

ImageOptions None This property is no longer used.

Chapter 3 Classes 245

Disk

Parameter of
ServerInfo on page 328

Properties
Name Type Description

DiskName String This value is the name of the disk.

Partitions Partition [] on page 301 This value is the partitions on the disk.

PartTableType String This value is the partition table type.

SizeInB Int64 This value is the size, in bytes, of the disk.

Valid Boolean This value is true if the disk is valid; otherwise, it is false.

Chapter 3 Classes 246

DiskOptions

Parameter of
TestFailoverOptions on page 348, VRAOptions on page 368

Properties
Name Type Description

DesiredSizeInB String This value is the desired size, in bytes, of the new disk.

DiskControllerType String This value is the disk controller.

l IDE—Use this value to create an IDE disk.
l SCSI—Use this value to create a SCSI disk.

DiskName String This value is the name of the disk.

DiskProvisioningType String This value is the disk type.

l Dynamic—Use this value for ESX thin disks and for
Hyper-V dynamic disks.

l Fixed—Use this value for ESX thick disks and for
Hyper-V fixed disks.

l Flat Disk—Use this value for ESX flat disks. This type
is not supported on Hyper-V.

Partitions Partition [] on page 301 This value is the partitions on the disk.

PartTableType String This value is the partition table type.

PreexistingDiskPath String This value is the full path and file name of an existing virtual
disk that you want to reuse. If this value is null, a new virtual
disk will be created.

SizeInB Int64 This value is the size, in bytes, of the disk.

Chapter 3 Classes 247

Name Type Description

Valid Boolean This value is true if the disk is valid; otherwise, it is false.

VirtualDiskPath String This value is the path on the host where the disk should be
stored.

Chapter 3 Classes 248

DnsDomainDetails

Parameter of
DnsOptions on page 250

Properties
Name Type Description

Credentials Credentials on page 243 This value represents the domain credentials.

DC String This value is the domain controller (usually an IP address)
where DNS records should be locked.

DnsServers DnsServerDetail [] on page 251 This value represents a DNS server that will be updated during
DNS failover.

DomainName String This value is the name of the domain.

IpAddressMappings IpAddressMap [] on page 272 This value represents themapping between source IP address
and target IP address when using DNS failover.

ShouldUpdateTtl Boolean This value is true if the time to live value should be updated;
otherwise, it is false.

TtlValue Int32 This value is the time to live value in seconds.

UpdateRecordType RecordType on page 417 This value is the record types that will be failed over and failed
back.

Chapter 3 Classes 249

DnsOptions

Returned by
Get-DtDnsOptions on page 38

Parameter of
JobOptions on page 277

Properties
Name Type Description

AdditionalDns String This value identifies any additional source DNS servers to
update.

AllIpAddressesNeedMapping Boolean This value is true if all IP addresses need to bemapped to a
target IP address; otherwise, it is false.

AlternateTrustee String This value is the source server trustee, which overrides the
default trustees of "NT AUTHORITY\SYSTEM" and the
source computer account (for clustered environments).

Domains DnsDomainDetails [] on page 249 This value represents the domains that will be updated during
failover.

Enabled Boolean This value is true if DNS failover is enabled; otherwise, it is
false.

SourceServerInWorkgroup Boolean This value is true if the source is in a workgroup; otherwise, it is
false.

SourceServerName String This value is the name of the source server.

TargetServerName String This value is the name of the target server.

Chapter 3 Classes 250

DnsServerDetail

Parameter of
DnsDomainDetails on page 249

Properties
Name Type Description

Address String This value is the IP address of the DNS server.

Origin String This value is the origin of the DNS server, which indicates if the
DNS server was discovered from the source server, the target
server, both servers, or manually specified by the user.

SelectedForUpdate Boolean This value is true if the DNS server will be updated during
failover; otherwise, it is false.

Chapter 3 Classes 251

EmailNotificationOptions

Returned by
Get-DtEmailNotificationOptions on page 41, Set-DtEmailNotificationOptions on page 140

Parameter of
Test-DtEmailNotification on page 186

Properties
Name Type Description

ConnectionSecurity SmtpConnectionSecurity on page 427 This value represents the SMTP server connection security.

Enabled Boolean This value is true if email notification is enabled; otherwise, it
is false.

EntryIdFilter String This value is one or more comma-delimitedWindows Event
Log entry IDs for which email notifications should be sent.

EntryTypeFilter String This value is one or more comma-delimitedWindows Event
Log entry types (error, warning, or information) for which email
notifications should be sent.

From String This value is the e-mail address that will be placed in the From
field of the email message.

IncludeEventDescriptionInSubject Boolean This value is true if the event description is included in the
email subject; otherwise, it is false.

LoginToSmtpServer Boolean This value is true if youmust log in to the SMTP server;
otherwise, it is false.

SmtpCredentials Credentials on page 243 This value represents the credentials used to log into the
SMTP server. Do not set this value if you want to user the
SMTP server anonymously.

Chapter 3 Classes 252

Name Type Description

SmtpPort Int32 This value is the SMTP port. The default port is 25.

SmtpServer String This value is the name of the SMTP server.

SubjectPrefix String This value is the text that will be added to the beginning of the
email subject.

To String This value can contain one or more comma-delimited e-mail
addresses to which the email notifications will be sent.

Chapter 3 Classes 253

EngineControlStatus

Parameter of
JobStatus on page 282

Properties
Name Type Description

CanPauseMirror Boolean This value is true if mirroring can be paused;otherwise, it is
false.

CanPauseTarget Boolean This value is true if the target can be paused;otherwise, it is
false.

CanPauseTransmission Boolean This value is true if transmission can be paused;otherwise, it is
false.

CanProcessOrphans Boolean This value is true if the orphan file removal process can be
started;otherwise, it is false.

CanRefreshStaus Boolean This value is true if the job's status can be refreshed; otherwise,
it is false.

CanResumeMirror Boolean This value is true if mirroring can be resumed;otherwise, it is
false.

CanResumeTarget Boolean This value is true if the target can be resumed;otherwise, it is
false.

CanResumeTransmission Boolean This value is true if transmission can be resumed;otherwise, it
is false.

CanSetBandwidth Boolean This value is true if a bandwidth limit can be set;otherwise, it is
false.

CanStartMirror Boolean This value is true if mirroring can be started;otherwise, it is

Chapter 3 Classes 254

Name Type Description

false.

CanStartTransmission Boolean This value is true if transmission can be started;otherwise, it is
false.

CanStopMirror Boolean This value is true if mirroring can be stopped;otherwise, it is
false.

CanTakeSnapshot Boolean This value is true if the target can take a snapshot of the replica
data;otherwise, it is false.

CanUpdateShares Boolean This value is true if source share information can be
updated;otherwise, it is false.

CanVerify Boolean This value is true if verification of the source data to the target
replica data can be started;otherwise, it is false.

ConnectionId Guid This value is a unique ID that needs to be provided to the
replication engine control methods for controlling the replication
engine connection.

Role String This value is the role of the replication engine for the job. Jobs
may usemore than one replication engine connection in their
operation. This property provides a way to differentiate between
the replication engine connections for display purposes.

Chapter 3 Classes 255

EventLogEntry

Returned by
Get-DtEventLogEntry on page 42

Properties
Name Type Description

Category String This value is the text associated with the CategoryNumber.

CategoryNumber Int16 This value is the category number of the event.

EntryType EventLogEntryType on page 257 This value is the type of event.

Index Int32 This value is the index of this event in the event log.

InstanceId Int32 The value is a resource identifier that designates themessage
text for the event.

MachineName String This value is the name of the server that generated the event.

Message String This value is the localized event message.

ReplacementStrings String This value includes any replacement strings associated with
the event.

Source String This value is the name of the application that generated the
event.

TimeGenerated DateTime This value is the local time when the event was generated.

TimeWritten DateTime This value is the local time when the event was written to the
event log.

UserName String This value is the name of the user that generated the event.

Chapter 3 Classes 256

EventLogEntryType

Parameter of
EventLogEntry on page 256

Properties
Name Type Description

Error String The event message is an error message.

Information String The event message is an informationmessage.

Warning String The event message is a warningmessage.

Chapter 3 Classes 257

ExtendedLowLevelStates

Parameter of
JobStatus on page 282

Properties
Name Type Description

Health Health on page 403 This value represents the health of the low level state. Possible
uses include displaying an icon for a low level state.

MessageId String This value is a unique ID for the statemessage.

MessageIdFormatParameters String This value is the statemessage.

Chapter 3 Classes 258

FailbackOptions

Parameter of
RecommendedFailbackOptions on page 314, Start-DtJobFailback on page 155

Properties
Name Type Description

NewMonitorOptions CoreMonitorOptions on page 240 This value represents the options for configuring failover
monitoring after a job has been restored to a new source
server.

Chapter 3 Classes 259

FailoverOptions

Returned by
Get-DtUvraRecommendedFailoverOptions on page 77

Parameter of
RecommendedFailoverOptions on page 315, Start-DtJobFailover on page 157

Properties
Name Type Description

FailoverDataAction FailoverDataAction on page 392 This value represents the action to take on the queued target
data before failover.

FailoverMode FailoverMode on page 395 This value represents the live, test, or snapshot style of
failover.

FailoverType FailoverType.Options on page 401 This value represents the automatic or manual style of
failover.

PerformTestFailover Boolean This option is no longer used. Use FailoverMode on page 395
instead.

SkipSourceResourceShutdown Boolean This value is true if the cluster resource is not shut down on
the source during live failover; otherwise, it is false.

SnapshotId Guid This value is the snapshot ID that should be applied to the
target during snapshot failover.

Chapter 3 Classes 260

FailoverReport

Returned by
Get-DtAllFailoverReports on page 33, Get-DtLatestFailoverReport on page 47

Properties
Name Type Description

failoverSuccess Boolean This value is true if the failover was successful; otherwise, it is
false.

failoverType FailoverStyle on page 398 This value represents a live or test failover.

isReverse Boolean This value is true if this is the reverse of a job; otherwise, it is
false.

jobId String This value is the unique ID for the job.

jobName String This value is the name of the job.

jobType String This value is the job type name.

l Availability for Windows jobs
l FilesAndFolders—Files and folders
l ClusterAwareFilesAndFolders—Cluster-aware
files and folders

l SQL—SQL
l ClusterAwareSql—Cluster-aware SQL
l FullServerFailover—Full server
l VRA—Full server to ESX or full server to Hyper-V

l Availability for Linux jobs
l LinuxFilesAndFolders—Files and folders
l LinuxFullServerFailover—Full server
l Lvra—Full server to ESX

Chapter 3 Classes 261

Name Type Description

l Migrate for Windows jobs
l MoveDataOnlyMigration—Files and folders
migration

l MoveServerMigration—Full server migration
l VraMove—Full server to ESX migration or full
server to Hyper-V migration

l Migrate for Linux jobs
l LinuxMoveServerMigration—Full server
migration

l MoveLvra—Full server to ESX migration
l Other jobs

l Diagnostics—Throughput Diagnostic Utility

snapshotLabel String This value is the label of the snapshot being used. If you are
performing a live failover, this value will be null.

targetedMachineInfo MachineInfoClass on page 290 This value represents the target server's operating system and
version.

times TimeClass on page 350 This value represents the time at various points during failover.

Chapter 3 Classes 262

FailoverScriptConfiguration

Parameter of
MonitorConfiguration on page 292

Properties
Name Type Description

PostFailbackScript String This value is the full path and file name of the script located on
the target and to be run on the target after failback.

PostFailbackScriptArgs String This value is the comma-separated argumentsfor
PostFailbackScript.

PostFailoverScript String This value is the full path and file name of the script located on
the target and to be run on the target after failover.

PostFailoverScriptArgs String This value is the comma-separated argumentsfor
PostFailoverScript.

PreFailbackScript String This value is the full path and file name of the script located on
the target and to be run on the target before failback.

PreFailbackScriptArgs String This value is the comma-separated argumentsfor
PreFailbackScript.

PreFailbackWait Boolean This value is true if Carbonite will wait for PreFailbackScript to
complete before continuing with the failback operation;
otherwise, it is false.

PreFailoverScript String This value is the full path and file name of the script located on
the target and to be run on the target before failover.

PreFailoverScriptArgs String This value is the comma-separated argumentsfor
PreFailoverScript.

Chapter 3 Classes 263

Name Type Description

PreFailoverWait Boolean This value is true if Carbonite will wait for PreFailoverScript to
complete before continuing with the failover operation;
otherwise, it is false.

SourcePostFailbackScript String This value is the full path and file name of the script located on
the source and to be run on the source after failback.

SourcePostFailbackScriptArgs String This value is the comma-separated argumentsfor
SourcePostFailbackScript.

Chapter 3 Classes 264

Feature

Parameter of
JobInfo on page 274

Properties
Name Type Description

Endpoint Uri This value is the endpoint that identifies the location of the
service.

Tag String This value is the tag that identifies the role of the service.

Chapter 3 Classes 265

FilesAndFoldersOptions

Parameter of
JobOptions on page 277

Properties
Name Type Description

AllToOneMapping Boolean This value is true if files and folders jobs aremapped in an all to
one configuration; otherwise it is false and themapping is one to
one.

Chapter 3 Classes 266

FullServerFailoverOptions

Parameter of
JobOptions on page 277

Properties
Name Type Description

AdditionalStagingFolders String This value is the folders that should be staged on the target.
They will be applied to their actual installation location during
failover.

CreateBackupConnection Boolean This value is true if reverse protection should be configured for
this job; otherwise, it is false.

RemoveOrphans Boolean This value is true if orphan files should be removed for the
reverse connection; otherwise, it is false.

ReverseRoute String This value is the source IP address to be used for the reverse
connection.

ReverseRouteEnginePort Int32 This value is the port where the engine is listening.

ShutdownSourceServer Boolean This value is true if the source server should be shut down
during cutover; otherwise, it is false.

SourceChecksumAll Boolean This value is true if a checksum should be used for all files
when comparing them; otherwise, it is false.

Chapter 3 Classes 267

FullServerJobDetails

Parameter of
JobStatistics on page 281

Properties
Name Type Description

BackupConnectionDetails CoreConnectionDetails on page 234 This value represents the details of the Carbonite Availability
reverse connection.

CutoverDetails CutoverDetails on page 244 This value represents the Carbonite Migrate cutover detail.

ProtectionConnectionDetails CoreConnectionDetails on page 234 This value represents the details of the protection connection.

RecoveryConnectionDetails None This property is no longer used.

SystemVolumeRevertConnectionDetails CoreConnectionDetails on page 234 This value represents the details of the system volume revert
connection.

Chapter 3 Classes 268

FullServerNicMappings

Parameter of
FullServerTestFailoverOptions on page 270, SystemStateOptions on page 340

Properties
Name Type Description

SourceNic String This value is the NIC on the source server.

TargetNic String This value is the NIC on the target server.

TargetNicList String [] This value is the list of NICs on the target server.

TestFailoverTargetNic String This value is the NIC on the test failover server.

TestFailoverTargetNicList String [] This value is the list of NICs on the test failover server.

Chapter 3 Classes 269

FullServerTestFailoverOptions

Parameter of
JobOptions on page 277

Properties
Name Type Description

DeleteSnapshots Boolean This value is true if snapshots will be deleted after the test
failover; otherwise, it is false.

TestFailoverServerCredential TestFailoverServerCredentials on page
349

This value represents the server to use for test failover for full
server jobs.

NicMappings FullServerNicMappings [] on page 269 This value represents the NIC mappings for the test failover
for the full server job.

FailoverName String This value is the name applied to the test failover server. If
the job settings are failing over the server name, the source
namewill be used on the test server. If not, the target name
will be retained on the test server.

TestFailoverServerAddress String This value is the IP address used for the test failover
connection.

TestFailoverServerEnginePort Int32 This value is the port used on the test failover server.

TestFailoverServerReservedAddress String This value is the reserved IP address on the test server

Chapter 3 Classes 270

Guid

Returned by
New-DtFilesAndFoldersJob on page 98, New-DtJob on page 100, New-DtWorkload on page 110

Parameter of
Add-DtPhysicalRule on page 16, Checkpoint-DtConnection on page 20, Close-DtWorkload on page 24, Confirm-DtJobOptions on page 25, Edit-DtJob on
page 29, Get-DtBandwidthLimit on page 34, Get-DtConnectionIds on page 36, Get-DtJob on page 43, Get-DtJobActionStatus on page 45, Get-
DtLogicalItem on page 48, Get-DtQualificationResults on page 56, Get-DtRecommendedFailbackOptions on page 58, Get-
DtRecommendedFailoverOptions on page 60, Get-DtRecommendedPathTransform on page 64, Get-DtRecommendedRestoreOptions on page 65, Get-
DtSnapshot on page 71, Get-DtUvraRecommendedFailoverOptions on page 77, Get-DtUvraRecommendedRemoveOptions on page 79, Get-DtWorkload
on page 82, Get-DtWorkloadPhysicalItem on page 83, Invoke-DtQueueTask on page 92, Remove-DtJob on page 112, Remove-DtPhysicalRule on page
114, Remove-DtSnapshot on page 116, Repair-DtJobOptions on page 120, Resume-DtJob on page 127, Resume-DtMirror on page 129, Resume-
DtTarget on page 131, Save-DtJobDiagnostics on page 134, Set-DtBandwidthLimit on page 138, Set-DtJobCredentials on page 141, Set-
DtLogicalItemSelection on page 143, Start-DtJob on page 153, Start-DtJobFailback on page 155, Start-DtJobFailover on page 157, Start-DtJobRestore
on page 159, Start-DtJobReverse on page 161, Start-DtMirror on page 163, Start-DtOrphansProcessing on page 165, Start-DtReplication on page 167,
Start-DtVerify on page 169, Stop-DtJob on page 171, Stop-DtMirror on page 173, Stop-DtReplication on page 175, Suspend-DtJob on page 178, Suspend-
DtMirror on page 180, Suspend-DtTarget on page 182, Undo-DtJobFailover on page 194, Update-DtShares on page 199, Wait-DtMirrorComplete on page
203

Properties
Name Type Description

Guid String This value is a unique ID.

Chapter 3 Classes 271

IpAddressMap

Parameter of
DnsDomainDetails on page 249

Properties
Name Type Description

ShouldUpdateTtl Boolean This value is true if the time to live value should be updated;
otherwise, it is false.

SourceIP String This value is the IP address on the source server

TargetIP String This value is the IP address on the target server

TtlValue Int32 This value is the time to live value in seconds.

Chapter 3 Classes 272

JobAction

Parameter of
JobStatus on page 282

Properties
Name Type Description

Duration TimeSpan This value is the duration of the action.

ErrorCode Int32 This value is the error code associated with the action.

ExceptionMessage String This value is amessage from the underlying exception.The
message stored in this property should not be displayed in the
user interface, as it may not be available in the language used
by the interface. This property should only be used for internal
troubleshooting, and as ameasure of last resort in the event of
a completely unexpected error.

Id Guid This value is the unique ID of the action.

MessageFormatParameters String This value is themessage format parameters.

MessageId String This value is themessage ID for the action. This value can be
used to look up amessage associated with this action.

RequestingUserName String This value is the name of the user that requested the action.

Status ActionStatus on page 381 This value represents the status of the action.

Timestamp DateTimeOffset This value is the time when the action occurred.

TitleFormatParameters String This value is the title format parameters for the action.

TitleId String This value is the title ID for the action. This value can be used
to look up a title associated with this action.

Chapter 3 Classes 273

JobInfo

Returned by
Get-DtJob on page 43

Parameter of
Checkpoint-DtConnection on page 20, Confirm-DtJobOptions on page 25, Edit-DtJob on page 29, Get-DtBandwidthLimit on page 34, Get-DtJob on page
43, Get-DtQualificationResults on page 56, Get-DtRecommendedFailbackOptions on page 58, Get-DtRecommendedFailoverOptions on page 60, Get-
DtRecommendedRestoreOptions on page 65, Get-DtSnapshot on page 71, Get-DtUvraRecommendedFailoverOptions on page 77, Get-
DtUvraRecommendedRemoveOptions on page 79, Invoke-DtQueueTask on page 92, Remove-DtJob on page 112, Remove-DtSnapshot on page 116,
Resume-DtJob on page 127, Resume-DtMirror on page 129, Resume-DtTarget on page 131, Save-DtJobDiagnostics on page 134, Set-DtBandwidthLimit
on page 138, Set-DtJobCredentials on page 141, Start-DtJob on page 153, Start-DtJobFailback on page 155, Start-DtJobFailover on page 157, Start-
DtJobRestore on page 159, Start-DtJobReverse on page 161, Start-DtMirror on page 163, Start-DtOrphansProcessing on page 165, Start-DtReplication
on page 167, Start-DtVerify on page 169, Stop-DtJob on page 171, Stop-DtMirror on page 173, Stop-DtReplication on page 175, Suspend-DtJob on page
178, Suspend-DtMirror on page 180, Suspend-DtTarget on page 182, Undo-DtJobFailover on page 194, Update-DtShares on page 199, Wait-
DtMirrorComplete on page 203

Properties
Name Type Description

CreatorUserName String This value is the name of the user who created the job.

Features Feature [] on page 265 This value represents a service endpoint that provides additional
features for a job.

Id Guid This value is the unique ID for the job.

JobPersistedState None Do not use this property. Carbonite uses it internally.

JobType String This value is the job type name.

l Availability for Windows jobs
l FilesAndFolders—Files and folders
l ClusterAwareFilesAndFolders—Cluster-aware
files and folders

Chapter 3 Classes 274

Name Type Description

l SQL—SQL
l ClusterAwareSql—Cluster-aware SQL
l FullServerFailover—Full server
l VRA—Full server to ESX or full server to Hyper-V

l Availability for Linux jobs
l LinuxFilesAndFolders—Files and folders
l LinuxFullServerFailover—Full server
l Lvra—Full server to ESX

l Migrate for Windows jobs
l MoveDataOnlyMigration—Files and folders
migration

l MoveServerMigration—Full server migration
l VraMove—Full server to ESX migration or full
server to Hyper-V migration

l Migrate for Linux jobs
l LinuxMoveServerMigration—Full server
migration

l MoveLvra—Full server to ESX migration
l Other jobs

l Diagnostics—Throughput Diagnostic Utility

LoadedFromDisk Boolean This value is true if the job was loaded from persistence;
otherwise, it is false.

Managed Boolean This value is true if the job is managed; otherwise, it is false. This
property is intended to be used by transitional implementations of
jobs that want to allow their jobs to be visible to the jobmanager,
but will be responsible for creating those jobs andmanaging their
lifetime.

Options JobOptions on page 277 This value represents the current options for the job.

Chapter 3 Classes 275

Name Type Description

OtherHostUris IDictionary This value is the URIs for other servers involved in the job.

SourceHostUri URI This value is the source URI.

SourceHostUriDefault URI This value determins if the source URI has beenmodified. Do not
modify this value.

SourceUniqueId String This value is the unique ID of the source server.

Statistics JobStatistics on page 281 This value represents the current statistics of the job.

Status JobStatus on page 282 This value represents the current state of the job.

TargetHostUri Uri This value is the target URI.

TargetUniqueId String This value is the unique ID of the target server.

Chapter 3 Classes 276

JobOptions

Parameter of
Confirm-DtJobOptions on page 25, Edit-DtJob on page 29, JobInfo on page 274, New-DtFilesAndFoldersJob on page 98, New-DtJob on page 100,
RecommendedJobOptions on page 316, RepairStatus on page 318

Properties
Name Type Description

ApplicationOptions ApplicationOptions on page 216 This value represents the options for SQL jobs.

BandwidthOptions BandwidthOptions on page 220 This value represents bandwidth limiting configuration.

CloudOptions CloudOptions on page 225 The values represents cloud job options.

ClusterOptions ClusterOptions on page 227 This value represents cluster options.

CoreConnectionOptions CoreConnectionOptions on page 238 This value represents the options for the job connection.

CoreMonitorOptions CoreMonitorOptions on page 240 This value represents the options for configuring failover
monitoring by using the servicemonitoringmethod.

DnsOptions DnsOptions on page 250 This value represents the options for jobs using DNS
failover.

DtavOptions None This property is no longer used.

DTHVOptions None This property is no longer used.

FailoverMonitoringEnabled Boolean This value is true if failover monitoring is enabled; otherwise,
it is false.

FilesAndFoldersOptions FilesAndFoldersOptions on page 266 This value represents the options for files and folders jobs.

FullServerFailoverOptions FullServerFailoverOptions on page 267 This value represents the options for full server jobs.

FullServerTestFailoverOptions FullServerTestFailoverOptions on page This values represents the test failover options for full server

Chapter 3 Classes 277

Name Type Description

270 jobs.

ImageProtectionOptions None This property is no longer used.

ImageRecoveryOptions None This property is no longer used.

ManagementServiceTargetPort Int32 This value is the port where the engine is listening.

MonitoringOptions MonitoringOptions on page 296 This value represents the options for configuring failover
monitoring by using the servicemonitoringmethod.

Name String This value is the name of the job.

SimpleFailoverMonitorOptions None This property is no longer used.

SnapshotAdvancedOptions SnapshotAdvancedOptions on page
334

This value represents the advanced options for Linux
snapshots.

SnapshotMonitorOptions SnapshotMonitorOptions on page 336 This value represents themonitoring of snapshot usage
percentage for Linux full server jobs.

SourceNetworkIdForManagementService String This property is the IP address or host name that will be used
for Double-TakeManagement Service communication from
the target to the source.

SystemStateOptions SystemStateOptions on page 340 This value represents the system state options for full server
jobs.

TargetServicesOptions TargetServicesOptions on page 343 This value represents which target services will be stopped
and started during failover and failback.

UnmanagedConnectionOptions UnmanagedConnectionOptions on page
352

This value represents the options for unmanaged
connections which are connections that are not associated
with a known job. These connections were created in a client
outside of the jobmanager.

VcdVappOptions None This property is no longer used.

Chapter 3 Classes 278

Name Type Description

VRAOptions VRAOptions on page 368 This value represents the options for guest-level virtual jobs.

Workload Workload on page 373 This value represents the workload being protected by the
job.

The JobOptions class includes all possible configurations for all possible job types, whichmakes it large and potentially confusing. See Carbonite
Replication Console Set Options page to JobOptions class mapping on page 486 to help identify which JobOptions classes correspond to job options in
the Carbonite Replication Console.

Chapter 3 Classes 279

JobQualificationResults

Returned by
Get-DtQualificationResults on page 56

Parameter of
RecommendedJobOptions on page 316

Properties
Name Type Description

ClusterFilesAndFoldersQualificationResults ClusterFilesAndFoldersQualifcationResults
on page 226

This value represents configuration information for
clustered files and folders jobs.

CoreQualificationResults CoreQualificationResults on page 241 This value represents the replication engine connection
configuration.

DtavQualificationResults None This property is no longer used.

DTHVQualificationResults None This property is no longer used.

SourceBehindNat Boolean This value is true if the source is located behind a
NAT router; otherwise, it is false.

SourceHostUri Uri This value is the source URI.

SupportsFrameworkMonitoring Boolean This value is true if the server supports failover
monitoring; otherwise, it is false.

SuppressFailoverMonitorOptions Boolean This value is true if failover monitoring options are
suppressed; otherwise, it is false.

VcdVappQualificationResults None This property is not applicable. It is reserved for future
features.

VRAQualificationResults VRAQualificationResults on page 371 This value represents configuration information for guest-
level virtual jobs.

Chapter 3 Classes 280

JobStatistics

Parameter of
JobInfo on page 274

Properties
Name Type Description

CoreConnectionDetails CoreConnectionDetails on page 234 This value represents the details of the connection.

CoreMonitorDetails CoreMonitorDetails on page 239 This value represents the details of failover monitoring.

FullServerJobDetails FullServerJobDetails on page 268 This value represents the details of a full server job.

ImageProtectionJobDetails None This property is no longer used.

ImageRecoveryJobDetails None This property is no longer used.

Chapter 3 Classes 281

JobStatus

Parameter of
JobInfo on page 274

Properties
Name Type Description

Actions JobAction [] on page 273 This value represents an action recently reported by a job.

CanCreateImageRecovery None This property is no longer used.

CanDelete Boolean This value is true if you can delete the job; otherwise, it is
false.

CanEdit Boolean This value is true if the job can be edited; otherwise, it is false.

CanFailback Boolean This value is true if the job can be failed back; otherwise, it is
false.

CanFailover Boolean This value is true if the job can be failed over; otherwise, it is
false.

CanPause Boolean This value is true if the job can be can be paused; otherwise, it
is false.

CanRestore Boolean This value is true if the job can be restored; otherwise, it is
false.

CanReverse Boolean This value is true if the job can be reversed; otherwise, it is
false.

CanStart Boolean This value is true if the job can be started; otherwise, it is
false.

CanStop Boolean This value is true if the job can be stopped; otherwise, it is
false.

Chapter 3 Classes 282

Name Type Description

CanUndoFailover Boolean This value is true if the failover of the job can be undone;
otherwise, it is false.

EngineControlStatuses EngineControlStatus on page 254 This value represents the status of the replication engine.

ExtendedLowLevelState ExtendedLowLevelStates on page 258 This value represents additional information about the low
level job state.

Health Health on page 403 This value represents the high level health of the job.

HighLevelState HighLevelState on page 405 This value represents high level job states. High level states
typically map to phases of the job's overall lifecycle, like
mirroring or failing over. Jobs will pass through various high
level states during their lifetime, and the types of high level
states are usually shared between jobs, regardless of job type.

IsInError Boolean This value is true if the job is in an error state; otherwise, it is
false.

LowLevelState String This value is a low level job state. Low level states typically
map to individual steps the job is performing at any given time,
like attaching virtual disks or updating DNS. Low level states
provide detailed information about a job's current state or
action and will vary between different job types.

PermillageComplete Int32 This value is the percentage of the current activity for that job
that is complete. To display a percentage string for an arbitrary
activity, jobs can provide a value for this property, and that
value will be formatted and displayed in the client. To remove
the display of the percentage, set this property to zero.

TargetState String This value is derived from TargetStates on page 433.
Information from the connection is distilled into a string key
which is sent to the client for display.

Chapter 3 Classes 283

LogicalItems

Returned by
Get-DtLogicalItem on page 48

Parameter of
ChangedItems on page 224, Get-DtLogicalItem on page 48

Properties
Name Type Description

IsContainer Boolean This value is true if the item is a container of other items;
otherwise, it is false.

IsReadOnly Boolean This value is true if the item is read-only (meaning the
Saturation cannot be changed); otherwise, it is false.

ItemType String This value is the type of item.

Metadata String This value is any additional metadata that may be displayed for
a particular type of item. This metadata is not in any particular
format, but youmust be able to determine the format and
decipher themetadata based on the type.

Name String This value is the name of the item. Typically, this name is used
for display in the user interface.

PartitionName String This value is the name of the partition.

Path String This value is the path of the item.

Saturation SaturationLevel on page 424 This value represents the saturation level of the item. Typically,
this value is used to display a visual state in the user interface.

SaturationDefault SaturationLevel on page 424 This value is the default saturation level of the item. Typically,
this value is used to display a visual state in the user interface.

Chapter 3 Classes 284

LogicalVolume

Parameter of
VolumeGroup on page 363

Properties
Name Type Description

Attributes FileSystemAttributes on page 402 This value represents the file system attributes.

AvailableFreeSpace Int64 This value is the amount of free space on the volume.

CreationTime DateTime This value is the time when the volumewas created.

DesiredSize Int64 This value is the desired size of the new volume.

DiskControllerType String This value is the disk controller.

l IDE—Use this value to create an IDE disk.
l SCSI—Use this value to create a SCSI disk.

DiskProvisoningType String This value is the disk type.

l Dynamic—Use this value for ESX thin disks and for
Hyper-V dynamic disks.

l Fixed—Use this value for ESX thick disks and for
Hyper-V fixed disks.

l Flat Disk—Use this value for ESX flat disks. This type
is not supported on Hyper-V.

DriveFormat String This value is the file system format of the volume.

DriveType DriveType This value is the drive type.

IsContainer Boolean This value is true if the volume is a container of other volumes;
otherwise, it is false.

Chapter 3 Classes 285

Name Type Description

IsReadOnly Boolean This value is true if the volume is read-only; otherwise, it is
false.

IsSupported Boolean This value is true if the volume type is supported; otherwise, it
is false.

IsSystemDrive Boolean This value is true if the volume is the system volume;
otherwise, it is false.

ItemType String This value is the type of item.

Label String This value is the label assigned to the volume.

LastAccessTime DateTime This value is the time when the volumewas last accessed.

LastWriteTime DateTime This value is the time when the volumewas last written to.

LogicalVolumeName String This value is the name of the logical volume.

Metadata String This value is any additional metadata that may be displayed for
a particular type of item. This metadata is not in any particular
format, but youmust be able to determine the format and
decipher themetadata based on the type.

Name String This value is the name of the volume. Typically, this name is
used for display in the user interface.

Path String This value is the path of the volume.

PreexistingDiskPath String This value is the full path and file name of an existing virtual
disk that you want to reuse. If this value is null, a new virtual
disk will be created.

Saturation SaturationLevel on page 424 This value represents the saturation level of the volume.
Typically, this value is used to display a visual state in the user
interface.

Chapter 3 Classes 286

Name Type Description

ShortNameBehavior Boolean Do not use this property. Carbonite uses it internally.

Size Int64 This value is the physical size of the volume.

TotalSize Int64 This value is the total size of the volume.

VirtualDiskPath String This value is the path on the host where the volume should be
stored.

VolumeSignature Int16 This value is the volume signature.

VolumeType String This value is the type of volume.

Chapter 3 Classes 287

LogMessage

Returned by
Get-DtLogMessage on page 49

Properties
Name Type Description

Hash Int32 This value is themessage hash which is used to differentiate
messages written with the same Timestamp.

Id Int32 This value is themessage ID.

MessageType String This value is the type of logmessage.

ProcessId Int32 This value is the process ID of the process that generated the
message.

Sequence Int32 This value is the sequence number of this message in the log
file.

Source String This value identifies the service (Double-Take or Double-Take
Management Service) that generated the logmessage.

Text String This value is the content of the logmessage.

ThreadId Int32 This value is the thread ID of the thread that generated the
message.

Timestamp DateTime This value is the local time when themessage was generated.

TimeStampOffset DateTimeOffset This value is the relative UTC time when themessage was
generated.

Chapter 3 Classes 288

LvmOptions

Parameter of
ServerInfo on page 328, TestFailoverOptions on page 348, VRAOptions on page 368

Properties
Name Type Description

VolumeGroup VolumeGroup [] on page 363 This value represents the volume group properties.

Chapter 3 Classes 289

MachineInfoClass

Parameter of
FailoverReport on page 261

Properties
Name Type Description

os String This value is the server's operating system.

osVersion String This value is the operating system version.

Chapter 3 Classes 290

MirrorParameters

Parameter of
ConnectionStartParameters on page 232, Start-DtMirror on page 163

Properties
Name Type Description

ComparisonCriteria MirrorComparisonCriteria on page 410 This value represents how to compare the source protected
data and the replica on the target.

Options MirrorOperationOptions on page 411 This value represents what mirror operation will be performed.

OverrideJobOrphansProcessing Boolean This value is true if the job's orphan file setting is to be
overridden; otherwise, it is false.

Chapter 3 Classes 291

MonitorConfiguration

Parameter of
CoreMonitorOptions on page 240

Properties
Name Type Description

ActiveDirectoryCredentials Credentials on page 243 This value represents the Active Directory credentials.

ActiveDirectoryOptions ActiveDirectoryFailoverOptions on page
382

This value represents the Active Directory options.

Addresses MonitoredAddressConfiguration [] on
page 294

This value represents the configuration of the IP addresses
that should bemonitored for failure.

DataAction FailoverDataAction on page 392 This value represents the action to take on the queued target
data before failover.

FailoverIPAddressOption FailoverIPAddressesOption on page
393

This value represents which IP addresses should be applied to
the target server during failover.

FailoverType FailoverType.Monitor on page 400 This value represents if an entire server is being failed over.

ItemsToFailover FailoverItems on page 394 This value represents what will be failed over to the target.

MaxScriptFailures Int32 This value is the number of times amonitoring script can fail
when usingMonitoredAddressConfiguration on page
294.PingMethods on page 416.Script.

Name String This value is the name of the failover monitor.

ProcessingOptions FailoverProcessingOptions on page 396 This value represents how the failover is processed.

ReplaceActions FailoverReplaceActions on page 397 This value represents what identity items are to be replaced on
the target during failover.

Chapter 3 Classes 292

Name Type Description

ScriptMonitorEngine String This property is no longer used.

ScriptMonitorName String This value is the full path and name of amonitoring script when
usingMonitoredAddressConfiguration on page
294.PingMethods on page 416.Script.

Scripts FailoverScriptConfiguration on page 263 This value represents the scripts that should be run at different
stages of failover and failback.

SourceEndpoint String This value is the IP endpoint used to communicate with
Carbonite on the source.

SSMLogPath String This value is the path of the system state (full server
processor) log.

SSMManualReboot Boolean This value is true if the server has to bemanually rebooted to
apply the system state after failover; otherwise, it is false.

SSMRecoveryType None This property is no longer used.

SSMSourceNicGuids String This value is the global unique IDs associated with the source
NICs.

SSMStagingPath String This value is the path of the staged folders on the target.

SSMTargetNicGuids String This value is the global unique IDs associated with the target
NICs.

Trigger FailoverTrigger on page 399 This value represents when a failover operation is triggered
with respect to themonitored IP addresses.

Chapter 3 Classes 293

MonitoredAddressConfiguration

Parameter of
MonitorConfiguration on page 292

Properties
Name Type Description

Address String This value is themonitored IP address.

EnginePort Int32 This value is the port where the engine is listening.

MacAddress String This value is theMAC address of the NIC for themonitored IP
address.

MaxPingAttempts Int16 This value is themaximum number of ping attempts that will be
attempted before considering the IP address to be failed.

NicName String This value is the name of the NIC. On aWindows server, this is
typically a global unique ID.

PingInterval TimeSpan This value is the interval for how often themonitored IP address
is pinged.

PingMethods PingMethods on page 416 This value represents how the IP address is pinged.

SubnetMask String This value is the subnet mask of an IPv4 IP address.

Chapter 3 Classes 294

MonitoredAddressStatus

Parameter of
CoreMonitorDetails on page 239

Properties
Name Type Description

Address String This value is themonitored IP address.

Alive Boolean This value is true if the IP address is responding to pings;
otherwise, it is false.

FailoverConditionMet Boolean This value is true if the IP address is considered failed;
otherwise, it is false.

RemainingTime TimeSpan This value is the amount of time remaining before the IP address
is considered failed.

WarningConditionMet Boolean This value is true if the IP address is in a warning condition;
otherwise, it is false. An IP address is considered to be in a
warning condition if it has failed to respond to ping attempts for
three quarters of the number of attempts allowed to bemissed
before the IP address is considered failed. For example, if the
value for MonitoredAddressConfiguration on page
294.MaxPingAttempts is 20, then this property will be true after
15 failed attempts.

Chapter 3 Classes 295

MonitoringOptions

Parameter of
JobOptions on page 277

Properties
Name Type Description

ServiceMonitoringEnabled Boolean This value is true if the servicemonitoringmethod for failover
monitoring is enabled; otherwise it is false.

ServiceMonitoringOptions ServiceMonitoringOptions on page 333 This value represents the options used for the service
monitoringmethod for failover monitoring.

Chapter 3 Classes 296

NetworkInterfaceInfo

Parameter of
CoreQualificationResults on page 241, ServerInfo on page 328

Properties
Name Type Description

Description String This value is the description of the NIC.

DnsDomain String This value is the DNS domain assigned to the NIC.

DnsServers String This value is the DNS server assigned to the NIC.

Gateways String This value is the gateway assigned to the NIC.

Guid String This value is the unique ID for the NIC. It is equivalent to the
SettingID property of theWin32_NetworkAdapterConfiguration
WMI class as well as the NetworkInterface.Id property in the
Base Class Library (BCL).

Index Int32 Do not use this property. Carbonite uses it internally.

InterfaceIndex Int32 Do not use this property. Carbonite uses it internally.

IPAddresses UnicastIPAddressInfo [] on page 351 This value represents the IP addresses assigned to the NIC.

MacAddresses String This value represents theMAC address of the NIC.

Name String This value is the friendly name of the NIC.

PnpInstanceId String This value is the plug and play instance ID of the NIC.

ServiceName String This value is the service name of the NIC.

Chapter 3 Classes 297

OperatingSystemInfo

Parameter of
ServerInfo on page 328

Properties
Name Type Description

Architecture OperatingSystemArchitecture on page
413

This value represents the operating system architecture.

CSDVersion Int32 This value is the version of the operating system service pack
as a number.

HasBCDTemplate Boolean This value is true if the BCD template file exists; otherwise it is
false.

ProductSuite Int32 This value is theWindows OSVERSIONINFOEX structure,
which contains operating system version information including
major andminor version numbers, a build number, a platform
identifier, and information about product suites and the latest
service pack installed on the system.

ProductType OperatingSystemProductType on page
414

This value represents the type of operating system.

ServicePack String This value is the version of the operating system service pack
as a string.

Version OperatingSystemVersion on page 299 This value is the version of the operating system as a number.

VersionString String This value is the version of the operating system as a string.

Chapter 3 Classes 298

OperatingSystemVersion

Parameter of
OperatingSystemInfo on page 298

Properties
Name Type Description

Build Int32 This value is the build number of the operating system.

Major Int32 This value is themajor version of the operating system.

Minor Int32 This value is theminor version of the operating system.

Revision Int32 This value is the revision number of the operating system.

Chapter 3 Classes 299

OrphansSchedule

Parameter of
ConnectionSchedule on page 231

Properties
Name Type Description

IsEnabled Boolean This value is true if orphan files (files in the target path location
that are not present on the source) will be deleted; otherwise, it
is false. There is currently no schedule (time-related options) for
orphan files. They can only be on or off.

Chapter 3 Classes 300

Partition

Parameter of
Disk on page 246

Properties
Name Type Description

FileSystem String This value is the file system for the partition.

Flags String This value is the flags for the partition.

PartitionEndInB Int64 This value is the point in bytes where the partition ends.

PartitionName String This value is the name of the partition.

PartitionNumber Int32 This value is the partition number.

PartitionStartInB Int64 This value is the point in bytes where the partition begins.

PartitionType String This value represents the partition type like primary, extended,
or logical.

Valid Boolean This value is true if the partition is valid; otherwise, it is false.

Chapter 3 Classes 301

PathBlocking

Returned by
Get-DtPathBlocking on page 53

Properties
Name Type Description

BlockingMode PathBlockingMode on page 415 This value represents if the path is blocked.

Paths String [] This value is the paths that are blocked.

SourceAddress String This value is the source IP address that corresponds to the
connection that has the blocked paths.

Chapter 3 Classes 302

PathTransformation

Returned by
Get-DtRecommendedPathTransform on page 64

Parameter of
CoreConnectionOptions on page 238, ReplicaVmInfo on page 319, RestoreParameters on page 322, VmInfo on page 360

Properties
Name Type Description

SourcePath String This value is the path on the source.

TargetPath String This value is the path on the target.

Chapter 3 Classes 303

PhysicalItem

Returned by
Get-DtPhysicalItem on page 54, Get-DtWorkloadPhysicalItem on page 83

Parameter of
ChangedItems on page 224, Get-DtPhysicalItem on page 54, Get-DtWorkloadPhysicalItem on page 83

Properties
Name Type Description

Attributes FileSystemAttributes on page 402 This value represents the file system attributes.

CreationTime DateTime This value is the time when the item was created.

IsContainer Boolean This value is true if the item is a container of other items;
otherwise, it is false.

IsReadOnly Boolean This value is true if the item is read-only (meaning the
Saturation cannot be changed); otherwise, it is false.

ItemType String This value is the type of item.

LastAccessTime DateTime This value is the time when the item was last accessed.

LastWriteTime DateTime This value is the time when the item was last written to.

Metadata String This value is any additional metadata that may be displayed for
a particular type of item. This metadata is not in any particular
format, but youmust be able to determine the format and
decipher themetadata based on the type.

Name String This value is the name of the item. Typically, this name is used
for display in the user interface.

Chapter 3 Classes 304

Name Type Description

PartitionName String This value is the name of the partition.

Path String This value is the path of the item.

Saturation SaturationLevel on page 424 This value represents the saturation level of the item.
Typically, this value is used to display a visual state in the user
interface.

Size Int64 This value is the physical size of the item.

Chapter 3 Classes 305

PhysicalRule

Parameter of
ChangedItems on page 224, Workload on page 373

Properties
Name Type Description

Inclusion InclusionMode on page 408 This value represents if the rule will be included in or excluded
from replication.

IsReadOnly Boolean This value is true if the rule is read-only; otherwise, it is false.

Metadata String This value is any additional metadata for the rule. This property
can be used by specialized workload implementations to
provide additional hints to the job-creation process.

Path String This value is the path of the data to be replicated.

Recursion RecursionMode on page 418 This value represents if the rule will be applied to this path only
or to all children of the path as well.

Chapter 3 Classes 306

PhysicalVolume

Parameter of
VolumeGroup on page 363

Properties
Name Type Description

Attributes FileSystemAttributes on page 402 This value represents the file system attributes.

AvailableFreeSpace Int64 This value is the amount of free space on the volume.

CreationTime DateTime This value is the time when the volumewas created.

DesiredSize Int64 This value is the desired size of the new volume.

DiskControllerType String This value is the disk controller.

l IDE—Use this value to create an IDE disk.
l SCSI—Use this value to create a SCSI disk.

DiskProvisoningType String This value is the disk type.

l Dynamic—Use this value for ESX thin disks and for
Hyper-V dynamic disks.

l Fixed—Use this value for ESX thick disks and for
Hyper-V fixed disks.

l Flat Disk—Use this value for ESX flat disks. This type
is not supported on Hyper-V.

DriveFormat String This value is the file system format of the volume.

DriveType DriveType This value is the drive type.

IsContainer Boolean This value is true if the volume is a container of other volumes;
otherwise, it is false.

Chapter 3 Classes 307

Name Type Description

IsReadOnly Boolean This value is true if the volume is read-only; otherwise, it is
false.

IsSupported Boolean This value is true if the volume type is supported; otherwise, it
is false.

IsSystemDrive Boolean This value is true if the volume is the system volume;
otherwise, it is false.

ItemType String This value is the type of item.

Label String This value is the time when the volumewas last accessed.

LastAccessTime DateTime This value is the time when the volumewas last accessed.

LastWriteTime DateTime This value is the time when the volumewas last written to.

Metadata String This value is any additional metadata that may be displayed for
a particular type of item. This metadata is not in any particular
format, but youmust be able to determine the format and
decipher themetadata based on the type.

Name String This value is the name of the volume. Typically, this name is
used for display in the user interface.

Path String This value is the path of the volume.

PreexistingDiskPath String This value is the full path and file name of an existing virtual
disk that you want to reuse. If this value is null, a new virtual
disk will be created.

Saturation SaturationLevel on page 424 This value represents the saturation level of the volume.
Typically, this value is used to display a visual state in the user
interface.

ShortNameBehavior Boolean Do not use this property. Carbonite uses it internally.

Chapter 3 Classes 308

Name Type Description

Size Int64 This value is the physical size of the volume.

TotalSize Int64 This value is the total size of the volume.

VirtualDiskPath String This value is the path on the host where the volume should be
stored.

VolumeSignature Int16 This value is the volume signature.

VolumeType String This value is the type of volume.

Chapter 3 Classes 309

ProductInfo

Returned by
Get-DtProductInfo on page 55

Parameter of
CoreQualificationResults on page 241

Properties
Name Type Description

ActivationStatus ActivationStatus on page 213 This value represents the activation of the server.

CanPauseTarget Boolean This value is true if target operations can be paused;
otherwise, it is false.

CanResumeTarget Boolean This value is true if target operations can be resumed;
otherwise, it is false.

EgineModuleStatus Int32 Do not use this property. Carbonite uses it internally.

EnginePort Int32 This value is the port where the engine is listening.

GatewaySessionKey Int64 Do not use this property. Carbonite uses it internally.

InstallationPath String This value is the installation path.

LocalEndpoints String This value is the local endpoints.

MachineName String This value is the name of themachine.

ManagementServiceVersion ProductVersion on page 312 This value is the version of theManagement Service on the
server.

Name String This value is the name of the product on the server.

Chapter 3 Classes 310

Name Type Description

NatEndpoints String This value is the NAT endpoints.

ReservedAddress String This value is the reserved IP address for the server.

UniqueID String This value is the unique ID of the server.

Version ProductVersion on page 312 This value is the version of the product on the server.

Chapter 3 Classes 311

ProductVersion

Parameter of
ProductInfo on page 310, TargetStateInfo on page 345

Properties
Name Type Description

Build Int32 This value is the build (or sequence number) of the product.

Hotfix Int32 This value is the hotfix (or limited release) of the product.

Major Int32 This value is themajor version of the product.

Minor Int32 This value is theminor version of the product.

ServicePack Int32 This value is the service pack version of the product.

Chapter 3 Classes 312

PSCredential

Parameter of
New-DtServer on page 103, New-DtUri on page 106, New-DtUvraServer on page 108, Set-DtJobCredentials on page 141, Set-DtScriptCredentials on
page 148, Set-DtServerCredential on page 150, Test-DtActiveDirectoryCredentials on page 184, Test-DtScriptCredentials on page 190,

Properties
Name Type Description

UserName String This value is the user name.

Password SecureString This value is an encrypted password.

Chapter 3 Classes 313

RecommendedFailbackOptions

Returned by
Get-DtRecommendedFailbackOptions on page 58

Properties
Name Type Description

FailbackOptions FailbackOptions on page 259 This value represents the failback configuration.

IsSourceNew Boolean This value is true if the data from the target was or is being
restored to a new source server; otherwise, it is false.

RestoreStatus RestoreStatus on page 423 This value represents the status of the restoration process.

Chapter 3 Classes 314

RecommendedFailoverOptions

Returned by
Get-DtRecommendedFailoverOptions on page 60

Properties
Name Type Description

FailoverOptions FailoverOptions on page 260 This value represents the failover configuration.

IsTestFailoverSupported Boolean This value is true if test failover is supported for the job type;
otherwise, it is false.

Snapshots SnapshotEntry [] on page 335 This value represents the available snapshots on the target.

WarningTextTestFailover Boolean This value is true if optional warning text to display if test
failover is selected; otherwise, it is false.

WarnUserOfInconsistentProtectionData Boolean This value is true if the data on the target may be in an
inconsistent state; otherwise, it is false.

Chapter 3 Classes 315

RecommendedJobOptions

Returned by
Get-DtRecommendedJobOptions on page 62

Properties
Name Type Description

JobOptions JobOptions on page 277 This value represents the current options for the job.

JobQualificationResults JobQualificationResults on page 280 This value represents the job qualification results which are
other possible job options, in addition to those that are strictly
recommended. For example,
JobOptions.CoreConnectionOptions on page
238.TargetAddress may be the recommended address, but
JobQualificationResults.CoreQualificationResults on page
241.TargetIPAddresses may include other IP addresses on the
server.

Chapter 3 Classes 316

RecommendedRestoreOptions

Returned by
Get-DtRecommendedRestoreOptions on page 65

Properties
Name Type Description

CanClearRestoreRequired Boolean This value is true if the restore required flag can be cleared;
otherwise, it is false.

IsNat Boolean This value is true if the IP address is a public NAT address;
otherwise, it is false.

PossibleSourceAddresses String This value is the possible source IP addresses.

RestoreOptions RestoreOptions on page 321 This value represents the restoration options.

SameSourceOnly Boolean This value is true is the job can only be restored to the same
source server; otherwise, it is false.

Chapter 3 Classes 317

RepairStatus

Returned by
Get-DtRepairJobOptionsStatus on page 67

Properties
Name Type Description

Task ActivityStatusEntry on page 214 This value represents the status of the task being repaired.

JobOptions JobOptions on page 277 This value represents the repaired job options. This value will
be null until the repair has been completed.

Chapter 3 Classes 318

ReplicaVmInfo

Parameter of
VRAOptions on page 368

Properties
Name Type Description

Address String This value is the virtual machine guest name or IP address.

BiosGuid String This value is the virtual machine BIOS unique ID.

BootVolumeSignature Int8 [] This value is the virtual machine boot volume signature which
is required for agentless Hyper-V WAN failover.

CoresPerProcessor Int32 This value is the number of cores per processor. A value of 0 is
used for an unknown or unspecified number.

Cpus Int32 This value is the number of processors.

DisplayName String This value is the virtual machine display name.

GuestOS String This value is the virtual machine guest operating system.

GuestUri Uri This value is the guest URI.

Id Guid This value is the virtual machine unique ID.

Memory Int64 This value is the amount of memory in bytes.

OperatingSystem String This value is the ESX operating system.

Path String This value is the virtual machine configuration file location.

PathTransformations PathTransformation [] on page 303 This value represents where the protected source virtual
machine will be located on the target.

PrestageFolder String This value is the full path to a location that contains an existing

Chapter 3 Classes 319

Name Type Description

virtual disk that you want to reuse.

ReplicaVmVersion String This value is the version of the virtual machine hardware.

RunOnceAtStartup String This value is a command to run when the replica virtual
machine is first powered on.

SnapshotDataPath String This value is the virtual machine snapshot location.

SnapshotFileNames String [] This value is the virtual machine snapshot file names.

SystemDirectory String This value is the virtual machine system directory which is
required for agentless Hyper-V WAN failover.

VirtualHardDiskPath String [] This value is the virtual machine hard disk location.

Chapter 3 Classes 320

RestoreOptions

Parameter of
RecommendedRestoreOptions on page 317

Properties
Name Type Description

ClearRestoreRequired Boolean This value is true if the restore required flag can be cleared
without restoring; otherwise, it is false.

EnginePort Int32 This value is the port where the engine is listening.

RestoreParameters RestoreParameters on page 322 This value represents the restoration configuration.

RestoreTargetHostUri Uri This value is the target URI.
(The target is the target of the restoration connection, not the
original protection connection.)

Chapter 3 Classes 321

RestoreParameters

Parameter of
RestoreOptions on page 321

Properties
Name Type Description

ArchiveBinLocation String This property is no longer used.

ArchiveOption ArchiveOption This property is no longer used.

CompressionLevel CompressionLevel on page 229 This value represents how data will be compressed when it is
transmitted from the source to the target.

MirrorComparisonCritera MirrorComparisonCriteria on page 410 This value represents how to compare the source protected
data and the replica on the target.

OriginalSourceName String This value is the name of the original source server from the
original protection job.

OriginalTargetRoute String This value is the route for the original target server from the
original protection job.

PathTransformations PathTransformation on page 303 This value represents where the source protected data will be
located on the target.

ProcessOrphans Boolean This value is true if the orphan files (files in the target path
location that are not present on the source) are to be deleted;
otherwise, it is false.

ReplicationSetName String This value is the name of the protected data set.

RestoreOptions RestoreParametersRestoreOptions on
page 421

This value represents addtional options used for the
restoration process.

Chapter 3 Classes 322

ReverseOptions

Parameter of
VRAOptions on page 368

Properties
Name Type Description

VmName String This value is the display name of the reverse virtual machine.

VmPath String This value is the path on the host where the reverse virtual
machine should be stored.

Volumes VolumeOptions on page 364 This value represents a volume to reverse and any changes to
its base configuration.

ReverseVMwareServer URI This value is the URI of the ESX server hosting the reverse
appliance.

Chapter 3 Classes 323

ScriptPoint

Parameter of
ConnectionStartParameters on page 232

Properties
Name Type Description

Arguments String This value is a comma-separated list of valid arguments
required to execute the script.

ExecutionMode ScriptExecutionMode on page 425 This value represents if Carbonite will wait while executing the
script.

InteractionMode DesktopInteractionMode on page 388 This value represents if the script processing will dispaly on
screen.

Path String This value is the full path and file name of the script.

Type ScriptPointType on page 426 This value represents the type of script to execute.

Chapter 3 Classes 324

Server

Returned by
New-DtServer on page 103, New-DtUvraServer on page 108, Set-DtServerCredential on page 150

Parameter of
Add-DtPhysicalRule on page 16, Add-DtUvraPhysicalRule on page 18, Checkpoint-DtConnection on page 20, Close-DtWorkload on page 24, Confirm-
DtJobOptions on page 25, Disconnect-DtServer on page 28, Edit-DtJob on page 29, Get-DtAccessLevel on page 31, Get-DtActivationStatus on page 32,
Get-DtBandwidthLimit on page 34, Get-DtConnectionIds on page 36, Get-DtDiagnostics on page 37, Get-DtEmailNotificationOptions on page 41, Get-
DtEventLogEntry on page 42, Get-DtJob on page 43, Get-DtJobActionStatus on page 45, Get-DtLogicalItem on page 48, Get-DtLogMessage on page 49,
Get-DtOption on page 52, Get-DtPathBlocking on page 53, Get-DtPhysicalItem on page 54, Get-DtProductInfo on page 55, Get-DtQualificationResults
on page 56, Get-DtRecommendedFailbackOptions on page 58, Get-DtRecommendedFailoverOptions on page 60, Get-DtRecommendedJobOptions on
page 62, Get-DtRecommendedPathTransform on page 64, Get-DtRecommendedRestoreOptions on page 65, Get-DtScriptCredentials on page 69, Get-
DtServerInfo on page 70, Get-DtSnapshot on page 71, Get-DtUvraRecommendedFailoverOptions on page 77, Get-
DtUvraRecommendedRemoveOptions on page 79, Get-DtVerificationStatus on page 81, Get-DtWorkload on page 82, Get-DtWorkloadPhysicalItem on
page 83, Get-DtWorkloadType on page 84, Invoke-DtQueueTask on page 92, New-DtFilesAndFoldersJob on page 98, New-DtJob on page 100, New-
DtTaskParameters on page 105, New-DtWorkload on page 110, Remove-DtJob on page 112, Remove-DtPhysicalRule on page 114, Remove-
DtSnapshot on page 116, Repair-DtJobOptions on page 120, Restart-DtReplicationService on page 126, Resume-DtJob on page 127, Resume-DtMirror
on page 129, Resume-DtTarget on page 131, Save-DtJobDiagnostics on page 134, Set-DtActivationCode on page 136, Set-DtBandwidthLimit on page
138, Set-DtEmailNotificationOptions on page 140, Set-DtJobCredentials on page 141, Set-DtLogicalItemSelection on page 143, Set-DtOption on page
145, Set-DtPathBlocking on page 147, Set-DtScriptCredentials on page 148, Start-DtJob on page 153, Start-DtJobFailback on page 155, Start-
DtJobFailover on page 157, Start-DtJobRestore on page 159, Start-DtJobReverse on page 161, Start-DtMirror on page 163, Start-DtOrphansProcessing
on page 165, Start-DtReplication on page 167, Start-DtVerify on page 169, Stop-DtJob on page 171, Stop-DtMirror on page 173, Stop-DtReplication on
page 175, Stop-DtReplicationService on page 177, Suspend-DtJob on page 178, Suspend-DtMirror on page 180, Suspend-DtTarget on page 182, Test-
DtActiveDirectoryCredentials on page 184, Test-DtEmailNotification on page 186, Test-DtScript on page 188, Test-DtScriptCredentials on page 190,
Undo-DtJobFailover on page 194, Update-DtShares on page 199, Wait-DtMirrorComplete on page 203

Properties
Name Type Description

Credentials Credentials on page 243 This value represents the credentials used to access the
server.

Chapter 3 Classes 325

Name Type Description

HostName String This value is the name of the server.

Port Int32 This value is the port number used to access the server.

Role String This value is an optional role defined for the server.

URI String This value is the URI of the server.

Chapter 3 Classes 326

ServerActivationInformation

Returned by
Get-DtOnlineActivationRequest on page 51

Properties
Name Type Description

Code String This value is the license key.

ServerInformation String This value is the unique server information which will be used to
generate the activation key for this particular server.

ServerName String This value is the name of the server.

ServiceHost Server on page 325 This value is a server object returned from the New-DtServer
cmdlet. See New-DtServer on page 103.

Chapter 3 Classes 327

ServerInfo

Returned by
Get-DtServerInfo on page 70

Properties
Name Type Description

BiosGuid Guid This value is the BIOS unique ID.

BootVolume String This value is the server's boot volume.

CoresPerProcessor Int32 This value is the number of cores per processor. A value of 0 is
used for an unknown or unspecified number.

Disks Disk [] on page 246 This value is the disks on the server.

Domain String This value is the domain the server is amember of.

FullyQualifiedDomain String This value is the fully qualified domain name.

HalInternalName String This value is the internal name of the hardware abstraction
layer (HAL).

HalVersion String The version of the hardware abstraction layer

IsClustered Boolean This value is true if this the server is part of a cluster;
otherwise, it is false.

IsHostedByHyperV Boolean This value is true if the server is hosted by Hyper-V; otherwise,
it is false.

IsHostedByVMware Boolean This value is true if the server is hosted by VMware; otherwise,
it is false.

IsHostedByXen Boolean This value is true if the server is hosted by Xen; otherwise, it is
false.

Chapter 3 Classes 328

Name Type Description

IsHyperVHost Boolean This value is true if the server is a Hyper-V host; otherwise, it
is false.

IsReplicationEnabled Boolean This value is true if replication is enabled; otherwise, it is false.

IsSBS Boolean This value is true if the server is runningMicrosoft Windows
Small Business Server; otherwise, it is false.

IsSSE Boolean This value is true if the server is runningMicrosoft Windows
Storage Server; otherwise, it is false.

LogicalProcessorCount Int32 This value is the number of logical processors including
threads.

LvmOptions LvmOptions on page 289 This value represents the Linux VolumeManager (LVM)
options.

ManagementPort Int32 This value is the port where theManagement Service is
listening.

MemrorySize Int64 This value is the amount of memory on the server.

Name String This value is the name of the server.

NetPlanEnabled Boolean This value is true if an Ubuntu 18.04 server is using the netplan
networkingmanager; otherwise it is false.

NetworkInterfaces NetworkInterfaceInfo [] on page 297 This value represents the NICs on the server.

NodeLockedServerInfo String This value is the server information needed for an activation
key.

OperatingSystem OperatingSystemInfo on page 298 This value is the the operating system on the server.

ProcessorCount Int32 This value is the processor count on the server.

ProgramFilesPath String This value is the server's program files path.

Chapter 3 Classes 329

Name Type Description

SystemPath String This value is the server's system path.

SystemRoot String This value is the sever's system root path.

SystemStateDefinition String Do not use this property. Carbonite uses it internally.

SystemVolume String This value is the server's system volume.

Volumes Volume [] on page 361 This value represents the volumes on the server.

Chapter 3 Classes 330

ServerQualificationResults

Parameter of
VRAQualificationResults on page 371

Properties
Name Type Description

CoresPerProcessor Int32 This value is the number of cores per processor. A value of 0 is
used for an unknown or unspecified number.

Cpus Int32 This value is the number of processors.

LogicalProcessors Int32 This value is the number of logical processors including
threads.

Memory Int64 This value is the amount of memory in bytes.

Version String This value is the version of the target host hypervisor.

VirtualSwitches VirtualSwitchInfo [] on page 358 This value represents the virtual switch information

Volumes VolumeQualificationResults on page
367

This value represents the volume information.

Chapter 3 Classes 331

ServiceInformation

Parameter of
ServiceMonitoringOptions on page 333, TargetServicesOptions on page 343

Properties
Name Type Description

DisplayName String This value is the service display name.

Name String This value is the service name.

Selected Boolean This value is true if the service is selected for service
monitoring; otherwise, it is false.

Chapter 3 Classes 332

ServiceMonitoringOptions

Parameter of
MonitoringOptions on page 296

Properties
Name Type Description

RepeatCount Int32 This value is the number of times to repeat the call to retrieve
the service status.

Services ServiceInformation [] on page 332 This value represents the services that should bemonitored.

StartService Boolean This value is true if themonitored service should be started if it
is stopped; otherwise, it is false.

Chapter 3 Classes 333

SnapshotAdvancedOptions

Parameter of
JobOptions on page 277

Properties
Name Type Description

SnapshotSizes SnapshotSize [] on page 338 This value represents snapshot sizes in a percentage of the
original volume.

Chapter 3 Classes 334

SnapshotEntry

Returned by
Get-DtSnapshot on page 71

Parameter of
RecommendedFailoverOptions on page 315, TargetStateInfo on page 345

Properties
Name Type Description

Attributes SnapshotAttributes on page 428 This value represents a snapshot created by theWindows
Volume Snapshot Service.

Comment String This value is any description associated with the snapshot.

ConName String This value is the connection name for the snapshot.

Id Guid This value is the unique ID for the snapshot.

Reason SnapshotCreationReason on page 429 This value represents why the snapshot was taken.

Result String This value is a description of the result of the snapshot.

States TargetStates on page 433 This value represents the state of the target associated with
the snapshot.

Timestamp DateTimeOffset This value is the time when the snapshot was taken.

Chapter 3 Classes 335

SnapshotMonitorOptions

Parameter of
JobOptions on page 277

Properties
Name Type Description

SnapshotMonitorEnabled Boolean This value is true if snapshot monitoring is enabled; otherwise,
it is false.

SnapshotMonitorInterval TimeSpan This value is the frequency that Carbonite checks the snapshot
usage percentage.

SnapshotMonitoThreshold Int64 This value is the threshold to warn when snapshot usage
percentage will be exceeded.

Chapter 3 Classes 336

SnapshotSchedule

Parameter of
ConnectionStartParameters on page 232

Properties
Name Type Description

Interval TimeSpan This value is the interval for taking snapshots.

IsEnabled Boolean This value is true if the snapshot schedule is set; otherwise, it
is false.

MaxNumberOfSnapshots Int32 This value is themaximum number of snapshots that will be
retained.

SnapshotSizePerecentage Int32 This value represents snapshot sizes in a percentage of the
original volume.

StartTime DateTime This value is the when the snapshot schedule should start.

Chapter 3 Classes 337

SnapshotSize

Parameter of
SnapshotAdvancedOptions on page 334

Properties
Name Type Description

VolumeName String This values represents the name of the original volume.

SizeInPercent Int32 This values represents a percentage.

Chapter 3 Classes 338

SourceQueueSnapshotEntry

Returned by
Get-DtSourceQueueSnapshot on page 73, Get-DtSourceQueueSnapshots on page 75

Properties
Name Type Description

CorrelationId Guid This value is the correlation ID for the snapshot.

JobId Guid This value is the job ID.

Quality SnapshotQuality on page 430 This value represents the quality of the snapshot.

Reason SnapshotCreationReason on page 429 This value represents why the snapshot was taken.

SnapshotSetId Guid This value is the snapshot ID.

SourceAddress String This value is the IP address of the source server

State SnapshotState on page 431 This value is the state of the snapshot.

TargetStates TargetStates on page 433 This value represents the state of the target associated with
the snapshot.

TimeStampCompleted DateTimeOffset This value is when the coordinated snapshot was completed.

TimeStampRequested DateTimeOffset This value is when the coordinated snapshot was requested.

Chapter 3 Classes 339

SystemStateOptions

Parameter of
JobOptions on page 277

Properties
Name Type Description

AlternateVolumeMapping String This value is themapping of source volumes to target volumes
for alternate volume staging, for example, C:;N:.

AlternateVolumeStaging Boolean This value is true if volumes will be staged to an alternate
volume; otherwise it is false.

ApplyPorts Boolean This value indicates if the source ports should be copied to the
target.

ClearMonitor Boolean This value is true if the failover monitor should be removed at
cutover; otherwise, it is false.

IsWanFailover Boolean This value is true if the job uses WAN failover; otherwise,it is
false.

KeepTargetActivationCode Boolean This value is true if the target license key should be kept after
failover; otherwise, it is false (and the source's license key will
be applied to the target after failover).

NicMappings FullServerNicMappings [] on page 269 This value represents the NIC mappings for a full server job.

ServerNameOverride String Do not use this property. Carbonite uses it internally.

ServicesToStopOptions TargetServicesToStop [] on page 344 This value represents the services on the target to stop during
protection.

ShouldApplyDiskSignatures Boolean This value is true if disk signatures should be applied at
cutover; otherwise, it is false.

Chapter 3 Classes 340

Name Type Description

SourceReservedAddress String This value is the reserved IP address on the source server.

StagingFolder String This value is the folder on the target where operating system
files from the source will be staged.

TargetReservedAddress String This value is the reserved IP address on the target server

Chapter 3 Classes 341

TargetFileServerQualificationResults

Parameter of
ClusterFilesAndFoldersQualifcationResults on page 226

Properties
Name Type Description

ClusterResourceGroupIPAddresses UnicastIPAddressInfo [] on page 351 This value represents a unicast IP address.

ClusterResourceGroupName String This value is the name of the cluster group that contains the
resource.

CurrentOwnerNodeName String This value is the name of the resource's current owning node.

DiskSize Int64 This value is total disk size, in bytes, of the volume.

DriveLetter String This value is the volume drive letter.

FreeSpace Int64 This value is the free space, in bytes, available on the volume.

IsVolumeCSV Boolean This value is true if it is a cluster shared volume; otherwise, it
is false.

RecommendedGroup Boolean This value is true if there is a file server group on the target
cluster that matches the protected file server group from the
source; otherwise, it is false. When this value is true, an IP
address from the group will be used as the route for
CoreConnectionOptions on page 238.TargetAddress.

Chapter 3 Classes 342

TargetServicesOptions

Parameter of
JobOptions on page 277

Properties
Name Type Description

FailoverServices ServiceInformation [] on page 332 This value represents services that will be stopped on the
source and started on the target during failover and started on
the source and stopped on the target during failback.

StartAndStopServices Boolean This value is true if the services will be stopped and started;
otherwise, it is false (and the services will be left running).

Chapter 3 Classes 343

TargetServicesToStop

Parameter of
SystemStateOptions on page 340

Properties
Name Type Description

Failover Boolean This value is true if the service should be started after failover;
otherwise, it is false. In addition to starting this service after
failover, this value is whether the service will be stopped
during failback.

IsCritical Boolean This value is true if the service is considered critical;
otherwise, it is false.

KeepRunningNonCritical Boolean This value is true if the non-critical service should be kept
running; otherwise, it is false.

ServiceDescription String This value is the service description.

ServiceName String This value is the name of the service

State TargetServiceStatus on page 432 This value represents the state of a service.

Chapter 3 Classes 344

TargetStateInfo

Parameter of
UnmanagedConnectionOptions on page 352

Properties
Name Type Description

ConnectionId Guid This value is the unique ID assigned to the connection.

ConnectTime DateTimeOffset This value is the time when the connection was created.

EngineConnectionId Int32 This value is the unique ID assigned to the replication engine
connection.

EngineJobType EngineJobType on page 390 This value is the job type according to the replication engine.
(These jobs are not the same as JobInfo on page
274.JobType.)

HasSnapshotSchedule Boolean This value is true if the connection has a snapshot schedule;
otherwise, it is false.

LastUpdateTime DateTimeOffset This value is the last time the target connection information
was updated.

NextScheduledSnapshot DateTimeOffset This value is the time of the next scheduled snapshot. This
property is only valid when HasSnapshotSchedule is true.

Paths String [] This value is the paths of the replica data on the target.

QueueBytes Int64 This value is the number of bytes in the target queue.

ReplicationSetName String This value is the name of the protected data set.

ReplicationSetUsageType ReplicationSetUsageType on page 419 This value defines the possible usage types for the protected
data set.

Chapter 3 Classes 345

Name Type Description

ScheduledSnapshotInterval TimeSpan This value is the interval for the scheduled snapshot. This
property is only valid when HasSnapshotSchedule is true.

Snapshots SnapshotEntry [] on page 335 This value represents the current list of snapshots for the
connection.

SourceEndpoint String This value is the IP endpoint used to communicate with
Carbonite on the source.

SourceEndpointFromSource String This value is the default address for the source server as
provided by the source server.

SourceMachineName String This value is the name of the source server.

SourceVersion ProductVersion on page 312 This value is the Carbonite product version on the source.

TargetEndpoint String This value is the destination endpoint of the socket
connection. If there is a NAT router between the source and
target, this value represents the target's private address
(translated from the public address). In other words, this will
not match the target endpoint specified for the target route of
the connection from the source's perspective.

TargetStates TargetStates on page 433 This values is the state of the target.

Chapter 3 Classes 346

TaskParameters

Returned by
New-DtTaskParameters on page 105

Parameter of
Invoke-DtQueueTask on page 92

Properties
Name Type Description

Arguments String This value is a comma-separated list of valid arguments
required to execute the script.

Script String This value is the full path and file name of the script.

Chapter 3 Classes 347

TestFailoverOptions

Parameter of
VRAOptions on page 368

Properties
Name Type Description

DeleteSnapshots Boolean This value is true if snapshots will be deleted after the test
failover; otherwise, it is false.

DeleteVirtualDisks Boolean This value is true if the virtual disks will be deleted after the test
failover; otherwise, it is false.

DiskOptions DiskOptions [] on page 247 This value is the disk options available on a Linux server. Use
this property for thematch source disk configuration strategy. If
you want a per volume disk configuration strategy use
VolumeOptions on page 364.

LvmOptions LvmOptions on page 289 This value represents logical volumemanager (LVM) options
for a Linux server.

ReplicaDisplayName String This value is the replica display name of the test failover server.
This value is only for full server to ESX for Linux jobs and
allows you to specify an alternate server for test failover.

Volumes VolumeOptions [] on page 364 This value represents the test volume and any changes to its
base configuration. For Linux, use this property for the per
volume disk configuration strategy. If you want amatching
source disk configuration strategy use DiskOptions on page
247.

Chapter 3 Classes 348

TestFailoverServerCredentials

Parameter of
FullServerTestFailoverOptions on page 270

Properties
Name Type Description

TestFailoverServerHardwareId String This value is the hardware ID of the test server for full server
jobs.

TestFailoverServerHostUri URI This value is the URI of the test server for full server jobs.

Chapter 3 Classes 349

TimeClass

Parameter of
FailoverReport on page 261

Properties
Name Type Description

completed DateTime This value is the time when failover completed.

startProcessing DateTime This value is the time when failover processing started.

startReboot DateTime This value is the time when the failover reboot started. For files
and folders jobs, this value will be null.

Chapter 3 Classes 350

UnicastIPAddressInfo

Parameter of
CoreQualificationResults on page 241, NetworkInterfaceInfo on page 297, TargetFileServerQualificationResults on page 342,
VirtualNetworkInterfaceInfo on page 356

Properties
Name Type Description

IPAddress String This value is the IP address as a string.

IPv4Mask String This value is the the IPv4 subnet mask.

IsDHCP Boolean This value is true if the IP address is a DHCP assigned
address; otherwise, it is false.

IsNAT Boolean This value is true if the IP address is a public NAT address;
otherwise, it is false.

IsOnline Boolean This value is true if the IP address is online; otherwise, it is
false.

Chapter 3 Classes 351

UnmanagedConnectionOptions

Parameter of
JobOptions on page 277

Properties
Name Type Description

TargetStateInfo TargetStateInfo on page 345 This value represents information on the state of the target.

Chapter 3 Classes 352

VerificationStatus

Returned by
Get-DtVerificationStatus on page 81

Properties
Name Type Description

Steps VerificationStep [] on page 354 This value represents a step in the job validation process. Do
not confuse this process with the verification process that
confirms if the data between the source and target are
synchronized.

Task ActivityStatusEntry on page 214 This value represents the status of the validation task.

Chapter 3 Classes 353

VerificationStep

Returned by
Wait-DtConfirmJobOptions on page 201

Parameter of
Repair-DtJobOptions on page 120, VerificationStatus on page 353

Properties
Name Type Description

CanFix Boolean This value is true if Carbonite can automatically fix the
validation item; otherwise, it is false.

Id String This value is the ID for the validation item.

Index Int32 This value is an index value used to impose an order to the
validation items.

MessageFormatParameters String This value is themessage format parameters.

MessageKey String This value is amessage key for the validation item. This value
can be used to look up themessage text.

Progress Int32 This value is the completion progress of the validation item.

Status ActivityCompletionStatus on page 383 This value represents the status of the validation item.

TitleFormatParameters String [] This value is the title format parameters for the action.

TitleKey String This value is a title key for the validation item. This value can
be used to look up the title text.

Chapter 3 Classes 354

VerifySchedule

Parameter of
ConnectionSchedule on page 231

Properties
Name Type Description

Criteria MirrorComparisonCriteria on page 410 This value represents how to compare the source protected
data and the replica on the target.

Interval TimeSpan This value is the interval for taking snapshots.

IsEnabled Boolean This value is true if the verification schedule is set; otherwise, it
is false.

Options MirrorOperationOptions on page 411 This value represents what mirror operation will be performed.

StartTime DateTime This value is the when the verification schedule should start.

Chapter 3 Classes 355

VirtualNetworkInterfaceInfo

Parameter of
VRAOptions on page 368

Properties
Name Type Description

Description String This value is the description of the NIC.

DnsDomain String This value is the DNS domain assigned to the NIC.

DnsServers String This value is the DNS server assigned to the NIC.

Gateways String This value is the gateway assigned to the NIC.

Guid String This value is the unique ID for the NIC. It is equivalent to the
SettingID property of theWin32_NetworkAdapterConfiguration
WMI class as well as the NetworkInterface.Id property in the
Base Class Library (BCL).

Index Int32 Do not use this property. Carbonite uses it internally.

InterfaceIndex Int32 Do not use this property. Carbonite uses it internally.

IPAddresses UnicastIPAddressInfo [] on page 351 This value represents the IP addresses assigned to the NIC.

MacAddresses String This value represents theMAC address of the NIC.

Name String This value is the friendly name of the NIC.

PnpInstanceId String This value is the plug and play instance ID of the NIC.

ServiceName String This value is the service name of the NIC.

VirtualNetwork String This value is the virtual network.

VirtualNictype String This value is one of the following virtual NIC types.

Chapter 3 Classes 356

Name Type Description

l Default
l Legacy
l Synthetic
l E1000
l PCNet32
l VmxNet
l VmxNet3
l xennet

VLAN_ID Int32 This value is the ID of the VLAN on the replica after live failover.
The value can be any integer between 1 and 4095, or a value of
0 indicates the server does not support setting the VLAN ID, or
a value of -1 indicates the VLAN ID should not be set. No other
values are supported.

VLAN_ID_TestFailover Int32 This value is the ID of the VLAN on the replica after test failover.
The value can be any integer between 1 and 4095, or a value of
0 indicates the server does not support setting the VLAN ID, or
a value of -1 indicates the VLAN ID should not be set. No other
values are supported.

Chapter 3 Classes 357

VirtualSwitchInfo

Parameter of
ServerQualificationResults on page 331, VirtualSwitchMapping on page 359

Properties
Name Type Description

Label String This value is the virtual switch label.

SwitchUuid String This value is the virtual switch unique ID.

Chapter 3 Classes 358

VirtualSwitchMapping

Parameter of
VRAOptions on page 368

Properties
Name Type Description

SourceVirtualSwitch VirtualSwitchInfo on page 358 This value represents the virtual switch on the source.

TargetVirtualSwitch VirtualSwitchInfo on page 358 This value represents the virtual switch on the target.

Chapter 3 Classes 359

VmInfo

Parameter of
VRAOptions on page 368

Properties
Name Type Description

Address String This value is the virtual machine guest name or IP address.

BiosGuid Guid This value is the virtual machine BIOS unique ID.

BootVolumeSignature Int8 [] This value is the virtual machine boot volume signature which
is required for agentless Hyper-V WAN failover.

DisplayName String This value is the virtual machine display name.

EsxHost String This value is the ESX server hosting the virtual machine.

GuestOS String This value is the virtual machine guest operating system.

GuestUri Uri This value is the guest URI.

Id Guid This value is the virtual machine unique ID.

Path String This value is the virtual machine configuration file location.

PathTransformations PathTransformation [] on page 303 This value represents where the protected source virtual
machine will be located on the target.

SnapshotDataPath String This value is the virtual machine snapshot location.

SnapshotFileNames String [] This value is the virtual machine snapshot file names.

SystemDirectory String This value is the virtual machine system directory which is
required for agentless Hyper-V WAN failover.

VirtualHardDiskPath String [] This value is the virtual machine hard disk location.

Chapter 3 Classes 360

Volume

Parameter of
CoreQualificationResults on page 241, ServerInfo on page 328

Properties
Name Type Description

Attributes FileSystemAttributes on page 402 This value represents the file system attributes.

AvailableFreeSpace Int64 This value is the amount of free space on the volume.

CreationTime DateTime This value is the time when the item was created.

DriveFormat String This value is the file system format of the volume.

DriveType DriveType This value is the drive type.

IsContainer Boolean This value is true if the volume is a container of other volumes;
otherwise, it is false.

IsReadOnly Boolean This value is true if the volume is read-only; otherwise, it is
false.

IsSupported Boolean This value is true if the volume type is supported; otherwise, it
is false.

IsSystemDrive Boolean This value is true if the volume is the system volume;
otherwise, it is false.

ItemType String This value is the type of item.

Label String This value is the label assigned to the volume.

LastAccessTime DateTime This value is the time when the volumewas last accessed.

LastWriteTime DateTime This value is the time when the volumewas last written to.

Chapter 3 Classes 361

Name Type Description

Metadata String This value is any additional metadata that may be displayed for
a particular type of item. This metadata is not in any particular
format, but youmust be able to determine the format and
decipher themetadata based on the type.

Name String This value is the name of the volume. Typically, this name is
used for display in the user interface.

PartitionName String This value is the name of the partition.

Path String This value is the path of the volume.

Saturation SaturationLevel on page 424 This value represents the saturation level of the volume.
Typically, this value is used to display a visual state in the user
interface.

ShortNameBehavior Boolean Do not use this property. Carbonite uses it internally.

Size Int32 This value is the physical size of the volume.

TotalSize Int64 This value is the total size of the volume.

VolumeType String This value is the type of volume.

Chapter 3 Classes 362

VolumeGroup

Parameter of
LvmOptions on page 289

Properties
Name Type Description

LogicalVolume LogicalVolume [] on page 285 This value represents the logical volumes in the volume group.

MaxPhysicalVolumeSize Int64 This value is themaximum size, in bytes, of the virtual disks
used to create the volume group. The default value is equal to
themaximum size that can be attached to the datastore you
selected. That will depend on your ESX version, your file
system version, and the block size of your datastore.

Name String This value is the name of the volume group on the source.

PhysicalVolume PhysicalVolume [] on page 307 This value represents the physical volumes in the volume
group.

PreexistingDisksPath String [] This value is the full path and file name of an existing virtual
disk that you want to reuse. If this value is null, a new virtual
disk will be created.

SourceVolumeGroupSize Int64 This value is the size of the volume group on the source.

Chapter 3 Classes 363

VolumeOptions

Parameter of
ReverseOptions on page 323, TestFailoverOptions on page 348, VRAOptions on page 368

Properties
Name Type Description

Attributes FileSystemAttributes on page 402 This value represents the file system attributes.

AvailableFreeSpace Int32 This value is the amount of free space on the volume.

CreationTime DateTime This value is the time when the volumewas created.

DesiredSize Int64 This value is the desired size of the new volume.

DiskControllerType String This value is the disk controller.

l IDE—Use this value to create an IDE disk.
l SCSI—Use this value to create a SCSI disk.

DiskProvisioningType String This value is the disk type.

l Dynamic—Use this value for ESX thin disks and for
Hyper-V dynamic disks.

l Fixed—Use this value for ESX thick disks and for
Hyper-V fixed disks.

l Flat Disk—Use this value for ESX flat disks. This type
is not supported on Hyper-V.

DriveFormat String This value is the file system format of the volume.

DriveType DriveType This value is the drive type.

Guid Guid This value is the UUID assigned to an existing virtual disk.

IsContainer Boolean This value is true if the volume is a container of other volumes;

Chapter 3 Classes 364

Name Type Description

otherwise, it is false.

IsReadOnly Boolean This value is true if the volume is read-only; otherwise, it is
false.

IsSupported Boolean This value is true if the volume type is supported; otherwise, it
is false.

IsSystemDrive Boolean This value is true if the volume is the system volume;
otherwise, it is false.

ItemType String This value is the type of item.

Label String This value is the label assigned to the volume.

LastAccessTime DateTime This value is the time when the volumewas last accessed.

LastWriteTime DateTime This value is the time when the volumewas last written to.

Metadata String This value is any additional metadata that may be displayed for
a particular type of item. This metadata is not in any particular
format, but youmust be able to determine the format and
decipher themetadata based on the type.

Name String This value is the name of the volume. Typically, this name is
used for display in the user interface.

PartitionName String This value is the name of the partition.

Path String This value is the path of the volume.

PreexistingDiskPath String This value is the full path and file name of an existing virtual
disk that you want to reuse. If this value is null, a new virtual
disk will be created.

Saturation SaturationLevel on page 424 This value represents the saturation level of the volume.
Typically, this value is used to display a visual state in the user
interface.

Chapter 3 Classes 365

Name Type Description

ShortNameBehavior Boolean Do not use this property. Carbonite uses it internally.

Size Int32 This value is the physical size of the volume.

TotalSize Int32 This value is the total size of the volume.

VirtualDiskPath String This value is the path on the host where the volume should be
stored.

VolumeSignature Int8 This value is the volume signature.

VolumeType String This value is the type of volume.

Chapter 3 Classes 366

VolumeQualificationResults

Parameter of
ServerQualificationResults on page 331

Properties
Name Type Description

ClusterResourceGroupName String This value is the name of the group that contains the resource.

CurrentOwnerNodeName String This value is the name of the resource's current owning node.

DiskSize Int64 This value is the total size, in bytes, of the volume.

DriveLetter String This value is the drive letter of the volume.

FreeSpace Int64 This value is the available free space, in bytes, on the volume.

IsSystemVolume Boolean This value is true if the volume is the system volume;
otherwise, it is false.

IsVolumeCSV Boolean This value is true if the volume is a cluster shared volume;
otherwise, it is false.

MaxFileSize Int64 This value is themaximum file size, in mebabytes, of the
virtual hard disk file.

ProvisionedSpace Int64 This value is the amount of provisioned space, in bytes, on the
volume.

Url String This value is the URL of an ESX datastore.

Chapter 3 Classes 367

VRAOptions

Parameter of
JobOptions on page 277

Properties
Name Type Description

Hypervisor String This value should be one of the following strings.

l VMWARE.ESX
l VCloud.ESX
l Windows.HyperV
l Amazon.XEN
l Citrix.XEN

IsSourceHostCluster Boolean This value is true if the source host is clustered; otherwise, it
is false.

IsWanFailoverEnabled Boolean This value is true if WAN failover is enabled; otherwise, it is
false.

DiskOptions DiskOptions [] on page 247 This value is the disk options available on a Linux server.
Use this property for thematch source disk configuration
strategy. If you want a per volume disk configuration strategy
use VolumeOptions on page 364.

DiskConfigStrategy DiskConfigStrategy on page 389 This value represents the disk configuration strategy used on
the target server.

LvmOptions LvmOptions on page 289 This value represents logical volumemanager (LVM) options
for a Linux server.

ReplicaApplianceInfo VmInfo on page 360 This value represents the helper appliance information.

Chapter 3 Classes 368

Name Type Description

ReplicaESXHostName String This value is the name of the ESX host where the replica will
be located.

ReplicaNetworkInterfaceInfo VirtualNetworkInterfaceInfo [] on page
356

This value represents the desired NIC configuration on the
replica virtual machine.

ReplicaVmInfo ReplicaVmInfo on page 319 This value represents the desired configuration of the replica
virtual machine.

ReverseCount Int32 Do not use this property. Carbonite uses it internally.

ReverseRoute String This value is the source IP address to be used for the reverse
connection.

ReverseOptions ReverseOptions on page 323 This value represents the options used for the reverse
process.

SourceApplianceInfo VmInfo on page 360 This value represents the appliance used during reverse.

SourceESXHostName String This value is the name of the ESX host where the source is
located.

SourceHypervisor String This value should be one of the following strings.

l VMWARE.ESX
l VCloud.ESX
l Windows.HyperV
l Amazon.XEN
l Citrix.XEN

SourceNetworkInterfaceInfo VirtualNetworkInterfaceInfo [] on page
356

This value represents the available NICs on the source.

SourceProductLicense String This value is the license key used for automatic installations
during the V to ESX and V to Hyper-V job creation process.

SourceVmInfo VmInfo on page 360 This value represents the source information used during

Chapter 3 Classes 369

Name Type Description

reverse.

TestFailover TestFailoverOptions on page 348 This values represents the test failover options for full server
to ESX and full server to Hyper-V jobs.

VirtualSwitchMapping VirtualSwitchMapping [] on page 359 This value represents the virtual switchmappings on the
source and target for live failover.

VirtualSwitchMappingTestFailover VirtualSwitchMapping [] on page 359 This value represents the virtual switchmappings on the
source and target for test failover.

Volumes VolumeOptions [] on page 364 This value represents a volume to protect and any changes to
its base configuration. For Linux, use this property for the per
volume disk configuration strategy. If you want amatching
source disk configuration strategy use DiskOptions on page
247.

WorkloadCustomizationOptions VRAWorkloadCustomizationOptions on
page 372

This value represents workload customization options.

Chapter 3 Classes 370

VRAQualificationResults

Parameter of
JobQualificationResults on page 280

Properties
Name Type Description

PreexistingDisksFileName String This value is the full path and file name of an existing virtual
disk that you want to reuse. If this value is null, a new virtual
disk will be created.

ReversetHost ServerQualificationResults on page 331 This value represents the reverse server information.

SourceName String This value is the name of the source server.

SourceServerCoresPerProcessorCount Int32 This value is the number of cores per processor. A value of 0
is used for an unknown or unspecified number.

SourceServerMemorySize Int64 This value is the amount of memory, in bytes, on the source.

SourceServerProcessorCount Int32 This value is the number of processors on the source.

TargetHost ServerQualificationResults on page 331 This value represents the target server information.

V2VQualificationResults None This property is no longer used.

Chapter 3 Classes 371

VRAWorkloadCustomizationOptions

Parameter of
VRAOptions on page 368

Properties
Name Type Description

NoReplication Boolean Do not use this property. Carbonite uses it internally.

PowerupReplicaAfterFailover Boolean This value is true if the replica should be powered on after
failover; otherwise, it is false.

ShouldShutdownSource Boolean This value is true if the source should be shut down during
failover; otherwise, it is false.

UseWin32 Boolean Do not use this property. Carbonite uses it internally.

Chapter 3 Classes 372

Workload

Returned by
Add-DtUvraPhysicalRule on page 18, Get-DtWorkload on page 82

Parameter of
Add-DtUvraPhysicalRule on page 18, Get-DtRecommendedJobOptions on page 62, JobOptions on page 277, New-DtWorkload on page 110

Properties
Name Type Description

LogicalRules String [] This value is the logical replication rules that define the workload.

PhysicalRules PhysicalRule [] on page 306 This value represents the physical replication rules that define
the workload.

RecoveryImageDataPath None This property is no longer used.

RecoveryImageId None This property is no longer used.

RecoverySnapshotSetId None This property is no longer used.

WorkloadTypeName String This value is the workload type name.

l Availability for Windows jobs
l FilesAndFolders—Files and folders
l ClusterAwareFilesAndFolders—Cluster-aware
files and folders

l SQL—SQL
l ClusterAwareSql—Cluster-aware SQL
l FullServerFailover—Full server
l VRA—Full server to ESX or full server to Hyper-V

l Availability for Linux jobs

Chapter 3 Classes 373

Name Type Description

l LinuxFilesAndFolders—Files and folders
l LinuxFullServerFailover—Full server
l Lvra—Full server to ESX

l Migrate for Windows jobs
l MoveDataOnlyMigration—Files and folders
migration

l MoveServerMigration—Full server migration
l VraMove—Full server to ESX migration or full
server to Hyper-V migration

l Migrate for Linux jobs
l LinuxMoveServerMigration—Full server
migration

l MoveLvra—Full server to ESX migration
l Other jobs

l Diagnostics—Throughput Diagnostic Utility

Chapter 3 Classes 374

WorkloadSupportSummary

Parameter of
WorkloadType on page 376

Properties
Name Type Description

Reason String This value can be a string resource ID used for obtaining the
reason text in the client or the reason text itself. If the reason
text needs to be formatted with parameters, use
ReasonFormatParameters.

ReasonFormatParameters String This value is format parameters for Reason.

Chapter 3 Classes 375

WorkloadType

Returned by
Get-DtWorkloadType on page 84

Properties
Name Type Description

IsLicensed Boolean This value is true if this type of workload is licensed for the
server; otherwise, it is false.

IsPresent Boolean This value is true if this type of workload is present on the server;
otherwise, it is false.

Name String This value is the workload type name.

l Availability for Windows jobs
l FilesAndFolders—Files and folders
l ClusterAwareFilesAndFolders—Cluster-aware
files and folders

l SQL—SQL
l ClusterAwareSql—Cluster-aware SQL
l FullServerFailover—Full server
l VRA—Full server to ESX or full server to Hyper-V

l Availability for Linux jobs
l LinuxFilesAndFolders—Files and folders
l LinuxFullServerFailover—Full server
l Lvra—Full server to ESX

l Migrate for Windows jobs
l MoveDataOnlyMigration—Files and folders
migration

l MoveServerMigration—Full server migration

Chapter 3 Classes 376

Name Type Description

l VraMove—Full server to ESX migration or full
server to Hyper-V migration

l Migrate for Linux jobs
l LinuxMoveServerMigration—Full server
migration

l MoveLvra—Full server to ESX migration
l Other jobs

l Diagnostics—Throughput Diagnostic Utility

SupportSummary WorkloadSupportSummary on page
375

This value is a summary of the licensing for the workload type.
The summary can be null if there is no reason to report any
details about the license calculation. Otherwise, it should be non-
null and populated with details about the license calculation that
the client can use for reporting purposes.

Chapter 3 Classes 377

Chapter 4 Enumerations
The following enumerations are used in the Carbonite classes.

l AccessLevel on page 380
l ActionStatus on page 381
l ActiveDirectoryFailoverOptions on page 382
l ActivityCompletionStatus on page 383
l BandwidthEntryType on page 384
l BandwidthScheduleMode on page 385
l BandwidthSpecificationType on page 386
l ClusterResourceState on page 387
l DesktopInteractionMode on page 388
l DiskConfigStrategy on page 389
l EngineJobType on page 390
l FailoverDataAction on page 392
l FailoverIPAddressesOption on page 393
l FailoverItems on page 394
l FailoverMode on page 395
l FailoverProcessingOptions on page 396
l FailoverReplaceActions on page 397
l FailoverStyle on page 398
l FailoverTrigger on page 399
l FailoverType.Monitor on page 400
l FailoverType.Options on page 401
l FileSystemAttributes on page 402
l Health on page 403
l HighAvailabilityState on page 404
l HighLevelState on page 405
l InclusionMode on page 408
l LicenseType on page 409
l MirrorComparisonCriteria on page 410
l MirrorOperationOptions on page 411
l MirrorState on page 412
l OperatingSystemArchitecture on page 413
l OperatingSystemProductType on page 414
l PathBlockingMode on page 415
l PingMethods on page 416
l RecordType on page 417
l RecursionMode on page 418
l ReplicationSetUsageType on page 419

Chapter 4 Enumerations 378

l ReplicationState on page 420
l RestoreParametersRestoreOptions on page 421
l RestoreStates on page 422
l RestoreStatus on page 423
l SaturationLevel on page 424
l ScriptExecutionMode on page 425
l ScriptPointType on page 426
l SmtpConnectionSecurity on page 427
l SnapshotAttributes on page 428
l SnapshotCreationReason on page 429
l SnapshotQuality on page 430
l SnapshotState on page 431
l TargetServiceStatus on page 432
l TargetStates on page 433
l TransmissionMode on page 435
l VmwareCertificatePolicy on page 436
l Weekdays on page 437

Chapter 4 Enumerations 379

AccessLevel

Returned by
Get-DtAccessLevel on page 31

Parameter of
CoreConnectionDetails on page 234

Properties
Name Enumeration Description

Unknown -1 The access level is unknown.

NoAccess 0 The credentials are not authenticated.

MonitorOnlyAccess 1 This access level is associated with membership in the
Double-TakeMonitors or dtmon security group.

FullAccess 2 This access level is associated with membership in the
Double-Take Admin or dtadmin security group.

Chapter 4 Enumerations 380

ActionStatus

Parameter of
JobAction on page 273

Properties
Name Enumeration Description

Pending 0 The action has not yet started.

Running 1 The action is running.

Completed 2 The action has completed successfully.

Cancelled 3 The action was canceled.

Faulted 4 The action encountered an error.

Chapter 4 Enumerations 381

ActiveDirectoryFailoverOptions

Parameter of
MonitorConfiguration on page 292

Properties
Name Enumeration Description

None 0 There are no Active Directory options applied.

FailoverHostName 1 The host name of the source server should bemoved to the
Active Directory server object of the target when a failover
occurs.

FailbackHostName 2 The host name of the target server should be reinstated in the
Active Directory server object of the target when failback
occurs.

Chapter 4 Enumerations 382

ActivityCompletionStatus

Parameter of
ActivityStatusEntry on page 214, VerificationStep on page 354

Properties
Name Enumeration Description

Pending 0 The activity is pending.

Running 1 The activity is running.

Completed 2 The activity has completed successfully.

Canceled 3 The activity was canceled.

Faulted 4 The activity had an error.

Chapter 4 Enumerations 383

BandwidthEntryType

Parameter of
BandwidthEntry on page 218

Properties
Name Enumeration Description

Daytime 0 This value is an entry where the BandwidthEntry on page
218.StartTime and .EndTime are on the same day.

Overnight 1 This value is an entry where the BandwidthEntry on page
218.StartTime value is on one day and the .EndTime value is on
the next day.

Chapter 4 Enumerations 384

BandwidthScheduleMode

Parameter of
BandwidthLimit on page 219, BandwidthOptions on page 220, BandwidthSchedule on page 221

Properties
Name Enumeration Description

NotLimited 0 Bandwidth is not limited.

Fixed 1 Bandwidth is limited to a fixed value.

Scheduled 2 Bandwidth is limited according to scheduled values.

Chapter 4 Enumerations 385

BandwidthSpecificationType

Parameter of
BandwidthSpecification on page 223

Properties
Name Enumeration Description

LAN 0 This value is the bandwidth associated with local area
networks.

WAN 1 This value is the bandwidth associated with wide area
networks.

Chapter 4 Enumerations 386

ClusterResourceState

Parameter of
CoreConnectionDetails on page 234

Properties
Name Enumeration Description

Uninitialized 0 A cluster resource is not used.

OfflinePending 1 The resource state changed to offline pending.

Offline 2 The resource state changed to offline.

OnlinePending 3 The resource state changed to online pending.

Online 4 The resource state changed to online.

ResourceNotFound 5 The cluster resource was not found on the cluster.

Reconnected 6 The cluster resource reconnected. This could be due to a node
roll.

Connected 7 The cluster resource is connected and online.

Chapter 4 Enumerations 387

DesktopInteractionMode

Parameter of
ScriptPoint on page 324, Test-DtScript on page 188

Properties
Name Enumeration Description

None 0 The script will execute silently in the background.

Interact 1 Script processing will be displayed on screen.

Chapter 4 Enumerations 388

DiskConfigStrategy

Parameter of
VRAOptions on page 368

Properties
Name Enumeration Description

CreateDiskPerVolume 0 The target disk configuration is per source volume.

MatchingSource 1 The target disk configurationmatches the source disk
configuration.

Customization 2 The target disk configuration is a custom configuration.

Chapter 4 Enumerations 389

EngineJobType

Parameter of
CloudOptions on page 225, TargetStateInfo on page 345

Properties
Name Enumeration Description

NormalJob 0 This value is a files and folders connection.

ImageJob 1 This property is no longer used.

RecoveryJob 2 This property is no longer used.

FullServerJob 4 This value is a full server connection forWindows.

GeoClusterJob 8 This property is no longer used.

MigrationJob 16 This value is a Carbonite Migrate connection.

FullServerRevertJob 32 This value is a full server reverse connection.

VraRecoveryJob 64 This value is a full server to ESX or Hyper-V reverse
connection.

VraMigrationJob 128 This value is a full server to ESX or Hyper-V Carbonite Migrate
connection.

DataOnlyOption 256 This value is for a connection that is replicating data only.

VraJob 512 This value is a full server to ESX or Hyper-V Carbonite
Availability connection.

HyperVJob 1024 This value is a Hyper-V connection.

Win32MirrorOption 2048 This value is a connection that will override the server default
and use theWin32mirroring driver.

Chapter 4 Enumerations 390

Name Enumeration Description

SourceConnectionResourceJob 4096 This value is a connection protecting a source cluster.

FullServerBackupJob 8192 This value is a full server reverse connection.

UvraJob 16384 This value is a full server to ESX appliance job.

NonClientAccessibleSnapshot 32768 This value indicates that snapshots created for this connection
should not have the VSS_CTX_CLIENT_ACCESSIBLE
context.

Invalid 65535 This value is an unknown connection.

FFO 65536 This value is a full server connection forWindows. This is not
the real value for engine job type, but is for
CreateConnectionAction to create a connection.

LVRA_JOB 131072 This value is a full server to ESX coonection for Linux. It is
usually a connection to the local server (the source is same as
the target) where the target drive is an iSCSI hosted by a Linux
appliance. This is not the real value for engine job type, but is
for CreateConnectionAction to create connection.

Chapter 4 Enumerations 391

FailoverDataAction

Parameter of
FailoverOptions on page 260, MonitorConfiguration on page 292

Properties
Name Enumeration Description

Apply 0 This value will apply the data in the target queue before starting
failover.

Flush 1 This value will discard the data in the target queue and start
failover immediately.

Revert 2 If the target data is in a bad state, this value will revert to the
last good snapshot, if snapshots are available. If the target data
is in a good state or no snapshots are available, this value will
apply the data in the target queue and then failover.

Unknown 3 The action is unknown.

Chapter 4 Enumerations 392

FailoverIPAddressesOption

Parameter of
MonitorConfiguration on page 292

Properties
Name Enumeration Description

Monitored 0 Failover only the IP addresses that are beingmonitored.

All 1 Failover all of the IP address on the source.

Chapter 4 Enumerations 393

FailoverItems

Parameter of
MonitorConfiguration on page 292

Properties
Name Enumeration Description

None 0 Nothing will be failed over.

IPAddresses 1 The IP addresses specified by MonitorConfiguration on page
292.FailoverIPAddressesOption will be applied to the target
during failover.

Name 2 The NetBIOS name of the source server will be applied to the
target during failover.

Shares 4 Shares included in the source workload will be added to the
target during failover.

Chapter 4 Enumerations 394

FailoverMode

Parameter of
FailoverOptions on page 260

Properties
Name Enumeration Description

Live 0 Failover is using live, current data and the target is started with
network connectivity.

Test 1 Failover is using live current data, but is a test. The target is
started without network connectivity.

Snapshot 2 Failover is using a data from a snapshot. The target is started
with network connectivity.

SetRestoreRequiredOnly 3 Failover is not performed, but the restore required fiag is set.

Chapter 4 Enumerations 395

FailoverProcessingOptions

Parameter of
MonitorConfiguration on page 292

Properties
Name Enumeration Description

None 0 This value resets the flags so no failover processing options
will be used.

UserInterventionRequired 1 The user must manually initiate failover when a failover
condition is met.

UseShareFile 2 When failing over file shares, the persisted share file on the
target should be used to create the shares on the target.
Without this value, the target will attempt to obtain the shares
from the source during failover, however, if the source is
unavailable, no shares will be created on the target.

Chapter 4 Enumerations 396

FailoverReplaceActions

Parameter of
MonitorConfiguration on page 292

Properties
Name Enumeration Description

None 0 This value resets the flags so no failover replace actions will be
used.

Name 1 The NetBIOS name of the target will be replaced by the
NetBIOS name from the source during failover.

Address 2 The IP addresses on the target will be replaced by the
IP address from the source during failover.

Chapter 4 Enumerations 397

FailoverStyle

Parameter of
FailoverReport on page 261

Properties
Name Enumeration Description

Live 0 Failover is using live, current data

Test 1 Failover is using live current data, but is a test.

Chapter 4 Enumerations 398

FailoverTrigger

Parameter of
MonitorConfiguration on page 292

Properties
Name Enumeration Description

OneAddressFails 0 A failover condition is met when onemonitored IP address fails.

AllAddressesFail 1 A failover condition is met when all monitored IP addresses fail.

Chapter 4 Enumerations 399

FailoverType.Monitor

Parameter of
MonitorConfiguration on page 292

Properties
Name Enumeration Description

Normal 0 The parameters in MonitorConfiguration on page 292 are used to
process failover.

FullServer 1 The entire server is being failed over and internal Carbonite
processing will determine what is failed over.

Chapter 4 Enumerations 400

FailoverType.Options

Parameter of
FailoverOptions on page 260

Properties
Name Enumeration Description

Manual 0 Failover must be initiated by the user.

Automatic 1 Failover will occur automatically when a failover condition is
met.

Chapter 4 Enumerations 401

FileSystemAttributes

Parameter of
LogicalVolume on page 285, PhysicalItem on page 304, PhysicalVolume on page 307, Volume on page 361, VolumeOptions on page 364

Properties
Name Enumeration Description

ReadOnly 1 The file system item is read-only.

Hidden 2 The file system item is hidden.

System 4 The file system item is a system item.

Directory 16 The file system item is a directory.

Archive 32 The file system item is is marked to be archived.

Normal 128 The file system item is normal.

Temporary 256 The file system item is temporary.

SparseFile 512 The file system item is a sparse file.

ReparsePoint 1024 The file system item is a reparse point.

Compressed 2048 The file system item is compressed.

Offline 4096 The file system item is offline.

NotContentIndexed 8192 The file system item is not content indexed.

Encrypted 16384 The file system item is encrypted.

Chapter 4 Enumerations 402

Health

Parameter of
ExtendedLowLevelStates on page 258, JobStatus on page 282

Properties
Name Enumeration Description

Unknown 0 The health of the job is unknown or not yet determined.

OK 1 The health of the job is good and data is protected.

Warning 2 The job is taking corrective action. Datamay not be protected.
You should closely monitor a job in a warning state.

Error 3 The job has encountered an error that requires user attention.
Data is not protected.

Chapter 4 Enumerations 403

HighAvailabilityState

Parameter of
CoreMonitorDetails on page 239

Properties
Name Enumeration Description

Illegal -1 There is a problem determining themonitoring status.

None 0 Themonitoring status has not yet been determined.

FailoverMonitoring 16 The target is monitoring the source for a failure. No failover
condition has beenmet.

FailoverRequired 32 Failover is pending because a failover condition has beenmet
but failover has not started yet.

FailoverOccurring 48 Failover is occurring.

FailbackRequired 64 The source is failed over to the target. A failback needs to occur
to restore the target to its original identity.

FailbackOccurring 80 Failback is occurring.

FailbackRemonitor 96 Failback is complete. The target is waiting to start monitoring
the source again.

Chapter 4 Enumerations 404

HighLevelState

Parameter of
JobStatus on page 282

Properties
Name Enumeration Description

Unknown 0 The job's state is unknown or not yet determined.

Created 1 The job is being created.

Deleting 2 The job is being deleted.

FailedBack 3 The job has failed back.

FailedOver 4 The job has failed over.

FailingBack 5 The job is failing back.

FailingOver 6 The job is failing over.

FailoverFailed 7 Failover has failed.

FailoverPending 8 The job has a failover conditionmet.

Mirroring 9 The job is mirroring.

MirrorRequired 10 The job requires amirror to ensure data integrity.

Paused 11 The job is paused.

Pausing 12 The job is pausing.

Protecting 13 The job is started and protecting.

Provisioning 14 The job is provisioning resources required to start protection.

Chapter 4 Enumerations 405

Name Enumeration Description

Restored 15 The job has completed restoring data.

RestoreFailed 16 Restoration has failed.

RestorePaused 17 The job is restoring data but transmission is currently paused.

RestoreRequired 18 The job needs to restore data from the target to a new or the
original source.

Restoring 19 The job is restoring data.

Resuming 20 The job is resuming.

Reversing 21 The job is reversing roles.

Reverting 22 The job is reverting.

Starting 23 The job is starting.

Stopped 24 The job is stopped.

Stopping 25 The job is stopping.

Undoing 26 The job is undoing a failover.

RevertingSnapshot 27 The job is reverting to a previous snapshot.

UpdatingTargetImage 28 This property is no longer used.

CredentialsRequired 29 The job does not have sufficient credentials to operate
properly.

ActivationCodeWarning 30 The Carbonite replication engine is reporting a licensing
warning.

ActivationCodeError 31 The Carbonite replication engine is reporting a licensing error.

EngineConnectionWarning 32 The connection associated with the job is reporting an error, but
the threshold for failed communication has not yet beenmet.

Chapter 4 Enumerations 406

Name Enumeration Description

EngineConnectionError 33 The connection associated with the job is reporting an error,
and the threshold for failed communication has been exceeded.

EngineServiceWarning 34 TheManagement Service on the target cannot communicate
with the target replication engine or theManagement Service
on the source cannot communicate with the source replication
engine, but the threshold for failed communication has not yet
beenmet.

EngineServiceError 35 TheManagement Service on the target cannot communicate
with the target replication engine or theManagement Service
on the source cannot communicate with the source replication
engine, and the threshold for failed communication has been
exceeded.

ServerCommunicationWarning 36 TheManagement Service on the target cannot contact the
Management Service on the source, but the threshold for failed
communication has not yet beenmet.

ServerCommunicationError 37 TheManagement Service on the target cannot contact the
Management Service on the source, and the threshold for failed
communication has not yet beenmet.

TargetInfoNotAvailable 38 The controller appliance for an agentless vSphere job cannot
communicate with the target.

Editing 39 The job is being edited.

Chapter 4 Enumerations 407

InclusionMode

Parameter of
PhysicalRule on page 306

Properties
Name Enumeration Description

Include 0 The data path is included in replication.

Exclude 1 The data path is excluded from replication.

Chapter 4 Enumerations 408

LicenseType

Parameter of
ActivationCode on page 210

Properties
Name Enumeration Description

NotApplicable 0 The license type is not applicable.

Limited 1 The license type is an evaluation license.

Single 2 The license type is a single server license.

Site 3 The license type is a site license.

NodeLockedKey 4 The key is an activation key.

Chapter 4 Enumerations 409

MirrorComparisonCriteria

Parameter of
MirrorParameters on page 291, RestoreParameters on page 322, VerifySchedule on page 355

Properties
Name Enumeration Description

None 0 Carbonite will not perform any comparison between the files on
the source and target.

Newer 1 Carbonite will compare file attributes between the files on the
source and target.

Checksum 2 Carbonite will compare file attributes and file data between files
on the source and target.

Chapter 4 Enumerations 410

MirrorOperationOptions

Parameter of
MirrorParameters on page 291, VerifySchedule on page 355

Properties
Name Enumeration Description

None 0 Carbonite will not mirror any files.

Synchronize 1 Carbonite will mirror the files from the source to the target. If you
use this property by itself, all files will bemirror. If you use this
property with CalculateDifferences, only the differences will be
mirrored.

Report 2 Carbonite will only report the differences found between the
source protected data set and the replica on the target. You
must use this option with CalculateDifferences in order for the
differences to be reported.

CalculateDifferences 4 Themirroring operation will calculate the differences between
the source protected data and the replica on the target using
MirrorComparisonCriteria on page 410

CalculateSize 8 Themirroring operation will calculate the size of the source
protected data set.

ProcessOrphans 16 Themirroring operation will process orphan files (files in the
target path location that are not present on the source).

Chapter 4 Enumerations 411

MirrorState

Returned by
Wait-DtMirrorComplete on page 203

Parameter of
CoreConnectionDetails on page 234

Properties
Name Enumeration Description

Calculating 0 The size of the replication set is being calculated.

Idle 1 No data is beingmirrored to the target.

Mirror 2 Data is beingmirrored to the target.

Pause 3 Mirroring is paused.

RemoveOrphans 4 Orphan files (files in the target path location that are not present
on the source) are being deleted.

RepsetVerify 5 The source protected data set is being verified against the
target replica data.

Restore 6 Replica data from the target is being restored to the source.

Stopped 7 Mirroring is stopped.

Waiting 8 Mirroring is complete, but data is still being written to the target.

Unknown 9 Themirror is in an unknown or error state.

Chapter 4 Enumerations 412

OperatingSystemArchitecture

Parameter of
OperatingSystemInfo on page 298

Properties
Name Enumeration Description

x86 0 The operating system uses the 32-bit architecture.

ia64 6 The operating system uses the Itanium 64-bit architecture.

x64 9 The operating system uses the AMD 64-bit architecture.

Chapter 4 Enumerations 413

OperatingSystemProductType

Parameter of
OperatingSystemInfo on page 298

Properties
Name Enumeration Description

None 0 The operating system product type is not defined.

Workstation 1 The operating system is a workstation.

DomainController 2 The operating system is a domain controller.

Server 3 The operating system is a server.

Chapter 4 Enumerations 414

PathBlockingMode

Parameter of
PathBlocking on page 302

Properties
Name Enumeration Description

Blocked 0 The path is blocked for writing, except by Carbonite.

Unblocked 1 The path is unblocked for writing.

Chapter 4 Enumerations 415

PingMethods

Parameter of
MonitoredAddressConfiguration on page 294

Properties
Name Enumeration Description

None 0 The IP address will not bemonitored for failure and cannot be
failed over.

Network 1 The IP address will bemonitored using an ICMP ping.

Service 2 The IP address will bemonitored using the Double-Take
service.

Manual 4 The IP address will not bemonitored for failure but is still eligible
for failover.

Script 8 The IP address will bemonitored using a user scripted ping
method. If you use this value, youmust set
MonitorConfiguration on page 292.ScriptMonitorEngine and
MonitorConfiguration on page 292.ScriptMonitorName.

ForceUpdate 256 Do not use this property. Carbonite uses it internally.

Chapter 4 Enumerations 416

RecordType

Parameter of
DnsDomainDetails on page 249

Properties
Name Enumeration Description

All 0 All record types are failed over and failed back.

HostOnly 1 Only host records (A and AAAA) are failed over and failed back.
You can combine HostOnly and SourcePtr by using
enumeration 3.

SourcePtr 2 PTR records are created tomap target IP addresses to the
source name. You can combine HostOnly and SourcePtr by
using enumeration 3.

Chapter 4 Enumerations 417

RecursionMode

Parameter of
PhysicalRule on page 306

Properties
Name Enumeration Description

Recursive 0 The physical rule will be applied to this path and all of its
children paths.

NonRecursive 1 The physical rule will be applied to this path only.

Chapter 4 Enumerations 418

ReplicationSetUsageType

Parameter of
TargetStateInfo on page 345

Properties
Name Enumeration Description

Invalid -1 This value is an unknown data set type.

Normal 0 This value is for all job types.

SystemState 1 This property is no longer used.

GeoCluster 2 This property is no longer used.

Chapter 4 Enumerations 419

ReplicationState

Parameter of
CoreConnectionDetails on page 234

Properties
Name Enumeration Description

NotReplicating 0 Replication is stopped.

OutOfMemory 1 Replicationmemory has been exhausted.

Pending 2 Replication is pending.

Replicating 3 Data is being replicated to the target.

Unknown 4 Replicationis in an unknown or error state.

Watchdog 5 The Double-Take service is not receiving replication operations
from the Carbonite driver. Check the event log for driver related
issues

Ready 6 There is no data to replicate.

Chapter 4 Enumerations 420

RestoreParametersRestoreOptions

Parameter of
RestoreParameters on page 322

Properties
Name Enumeration Description

None 0 No additional restroration options will be used.

UseTargetWorkload 1 Use the workload information that is stored on the target
instead of any workload information that is persisted on the
source.

RestoreWorkloadToSource 2 Restore the workload information from the target to the source.
This property can only be used with UseTargetWorkload.

OverwriteExistingFiles 4 Overwrite all existing files on the source during the restoration.

Chapter 4 Enumerations 421

RestoreStates

Parameter of
CoreMonitorDetails on page 239

Properties
Name Enumeration Description

None 0 There is no restoration connection.

OldServer 1 The server is running an old version of Carbonite and the
restoration status is not available.

Required 2 A restoration is required.

Connected 4 The restoration connection is active and is replicating.

MultiConnect 8 There is more than one active restoration connection.

Mirroring 16 The restoration connection is active andmirroring.

MirrorStopped 32 The restorationmirror has been stopped.

OpDropped 64 A mirroring or replication operation has been dropped. A
restoration remirorr is required.

OpRetrying 128 A mirorring or replication write operation is being retried.

Chapter 4 Enumerations 422

RestoreStatus

Parameter of
RecommendedFailbackOptions on page 314

Properties
Name Enumeration Description

NotStarted 0 The restoration operation has not started.

Restoring 1 The restoration process is in progress.

Restored 2 The restoration process is complete. It is now safe to perform
failback.

Chapter 4 Enumerations 423

SaturationLevel

Parameter of
LogicalItems on page 284, LogicalVolume on page 285, PhysicalItem on page 304, PhysicalVolume on page 307, Volume on page 361

Properties
Name Enumeration Description

Unknown 0 The saturation level is unknown.

None 1 The item will not be replicated.

Partial 2 Some, but not all, of the item will be replicated.

Full 3 The item and all of its children (if a container) will be replicated.

Error 4 An error occurred while calculating the saturation for the item.

Chapter 4 Enumerations 424

ScriptExecutionMode

Parameter of
ScriptPoint on page 324

Properties
Name Enumeration Description

Synchronous 0 Carbonite will wait while the script is executed.

Asynchronous 1 Carbonite will not wait while the script is executed.

Chapter 4 Enumerations 425

ScriptPointType

Parameter of
ScriptPoint on page 324

Properties
Name Enumeration Description

MirrorStart 0 The script is executed when the target receives the first mirror
operation. In the case of a differencemirror, this may be a long
time after themirror is started because the script does not start
until the first different data is received on the target. If the data
is synchronized and a differencemirror finds nothing tomirror,
the script will not be executed.

MirrorComplete 1 The script is executed when amirror is completed. Because the
mirror statistics may indicate amirror is at 99-100% when it is
actually still processing (for example, if files were added after
the job size was calculated, if there are alternate data streams,
and so on), the script will not start until all of themirror data has
been completely processed on the target.

MirrorStop 2 The script is executed when amirror is stopped, whichmay be
caused by an auto-disconnect occurring while amirror is
running, the service is shutdownwhile amirror is running, or if
you stop amirror manually.

Chapter 4 Enumerations 426

SmtpConnectionSecurity

Parameter of
EmailNotificationOptions on page 252

Properties
Name Enumeration Description

Plain 0 The security is plain.

SSL 1 The security is Secure Sockets Layer.

TLS 2 The security is Transport Layer Security.

Chapter 4 Enumerations 427

SnapshotAttributes

Parameter of
SnapshotEntry on page 335

Properties
Name Enumeration Description

None 0 This value represents no snapshots available.

JobManaged 1 This value represents a snapshot managed by a job.

ActiveTest 2 This value represents a snapshot managed by a test failover.

Chapter 4 Enumerations 428

SnapshotCreationReason

Parameter of
SnapshotEntry on page 335, SourceQueueSnapshotEntry on page 339

Properties
Name Enumeration Description

Manual 0 A user manually took this snapshot.

Automatic 1 Carbonite automatically took this snapshot.

Scheduled 2 A periodic snapshot schedule triggered this snapshot.

Deferred 3 A periodic snapshot schedule triggered this snapshot, although
it did not occur at the specified interval because the job
between the source and target was not in a good state

DataTest 4 The test failover process took this snapshot.

Coordinated 5 A user took a coordinated snapshot.

SQLClusterAutomatic 6 The test failover process took this snapshot for a clustered
SQL job.

Invalid 7 This is an invalid snapshot.

Chapter 4 Enumerations 429

SnapshotQuality

Parameter of
SourceQueueSnapshotEntry on page 339

Properties
Name Enumeration Description

Good 0 This value represents a good snapshot.

Bad 1 This value represents a bad snapshot.

Chapter 4 Enumerations 430

SnapshotState

Parameter of
SourceQueueSnapshotEntry on page 339

Properties
Name Enumeration Description

Completed 0 This value represents a completed snapshot.

Pending 1 This value represents a pending snapshot.

Error 2 This value represents a snapshot error.

Chapter 4 Enumerations 431

TargetServiceStatus

Parameter of
TargetServicesToStop on page 344

Properties
Name Enumeration Description

Stopped 0 The service is stopped.

Started 1 The service is started.

StopPending 2 The service is pending a stop.

StartPending 3 The service is pending a start.

ResumePending 4 The service is pending a resume.

PausePending 5 The service is pending a pause.

Paused 6 The service is paused.

Unknown 7 The state of the service is unknown.

Chapter 4 Enumerations 432

TargetStates

Parameter of
CoreConnectionDetails on page 234, SnapshotEntry on page 335, SourceQueueSnapshotEntry on page 339, TargetStateInfo on page 345

Properties
Name Enumeration Description

Good 0 The target is in a good state.

Mirroring 1 Mirroring is in progress.

MirrorStopped 2 Mirroring was stopped. A remirror should be performed.

OpDropped 4 The target detected than an operation was dropped on the
network. A remirror should be performed.

Retrying 8 The target is retrying a write operation.

Paused 16 Writing to the target has been paused by the user.

PausePending 32 Writing to the target has been paused by the user.

RestoreRequired 64 The data on the source and target may not be synchronized
because of a failover condition. This state will remain until a
restore or remirror is completed.

ReplicationPending 128 The connection has been established and replication is
enabled, but the first replication operation has not been
transmitted yet

SnapshotReverted 256 The data on the source and target may not be synchronized
because a snapshot was applied on the target. This state will
remain until a restore or remirror is completed.

FailoverUnblocked 512 This property is no longer used.

Chapter 4 Enumerations 433

Name Enumeration Description

Disconnected 1024 The target server cannot be contacted.

SroImage 2048 This property is no longer used.

FailoverMonitoring 4096 The target is monitoring the source for a failure.

TransactionsPending 8192 There are transactional NTFS (TxF) operations pending.

GCReplicationComplete 16384 This property is no longer used.

MarkedForDeletion 32768 The connection is marked for deletion when the source comes
back online.

JobNotReadyOnTarget 65536 The target server may not be ready to resume transmission, for
example due to disks being offline.

TargetPathBlocked 2147483648 Writing to the replica path location on the target is blocked.

Unknown -4294967296 The target state cannot be determined.

Chapter 4 Enumerations 434

TransmissionMode

Parameter of
CoreConnectionDetails on page 234

Properties
Name Enumeration Description

Error 0 Transmission is in an error state.

Paused 1 Transmission is paused.

Started 2 Transmission is active.

Scheduled 3 Transmission is pending a schedule.

Stopped 4 Transmission is stopped.

Unknown 5 Transmission is unknown.

Chapter 4 Enumerations 435

VmwareCertificatePolicy

Parameter of
Set-DtVmwareCertificatePolicy on page 151

Properties
Name Enumeration Description

AllowAll 0 Allow all certificates to be installed.

AllowSelfSigned 1 Allow only self-signed certificates to be installed.

AllowValid 2 Allow only valid certificates to be installed.

AllowKnownOrValid 4 Allow only known or valid certificates to be installed.

Chapter 4 Enumerations 436

Weekdays

Parameter of
BandwidthEntry on page 218, BandwidthScheduleEntry on page 222

Properties
Name Enumeration Description

None 0 No days of the week are specified.

Sunday 1 Sunday is specified.

Monday 2 Monday is specified.

Tuesday 4 Tuesday is specified.

Wednesday 8 Wednesday is specified.

Thursday 16 Thursday is specified.

Friday 32 Friday is specified.

Workdays 62 Monday, Tuesday, Wednesday, Thursday, and Friday are
specified.

Saturday 64 Saturday is specified.

Weekends 65 Saturday and Sunday are specified.

All 127 All days of the week are specified.

Chapter 4 Enumerations 437

Chapter 5 Scripting examples
Below are links to sample Carbonite PowerShell scripts. The sample scripts must bemodified. They cannot be
used as-is. Modify them to fit your environment. If you need basic assistance with script modifications, contact
Technical Support. Assistance with advanced scripting will be referred to Professional Services.

l Job creation scripts
l Carbonite Availability

l Creating a files and folders job forWindows on page 440
l Creating a full server job forWindows on page 442
l Creating a full server job for Linux on page 444
l Creating a SQL job on page 446
l Creating a full server to ESX job forWindows on page 448
l Creating a full server to ESX job for Linux on page 451
l Creating a full server to Hyper-V job on page 455

l Carbonite Migrate
l Creating a files and folders migration job forWindows on page 457
l Creating a full server migration job forWindows on page 459
l Creating a full server to ESX migration job forWindows on page 461
l Creating a full server to Hyper-V migration job on page 463

l Job information scripts
l Viewing job Event messages on page 466
l Creating a job diagnostics file on page 468

l Job control scripts
l Validating an existing job on page 470
l Editing a files and folders job forWindows on page 472
l Changing the compression setting for an existing job on page 474
l Stopping and starting a job on page 476
l Pausing and resuming a job on page 478
l Viewing and setting job and server options on page 480

l Other scripts
l Pausing and resuming your target on page 483
l Shutting down the Double-Take service on a server on page 484
l Hiding your password in a PowerShell script on page 485

Chapter 5 Scripting examples 438

Job creation scripts
Below are links to sample job creation scripts. The sample scripts must bemodified. They cannot be used as-is.
Modify them to fit your environment. If you need basic assistance with script modifications, contact Technical
Support. Assistance with advanced scripting will be referred to Professional Services.

l Carbonite Availability
l Creating a files and folders job forWindows on page 440
l Creating a full server job forWindows on page 442
l Creating a full server job for Linux on page 444
l Creating a SQL job on page 446
l Creating a full server to ESX job forWindows on page 448
l Creating a full server to ESX job for Linux on page 451
l Creating a full server to Hyper-V job on page 455

l Carbonite Migrate
l Creating a files and folders migration job forWindows on page 457
l Creating a full server migration job forWindows on page 459
l Creating a full server to ESX migration job forWindows on page 461
l Creating a full server to Hyper-V migration job on page 463

Chapter 5 Scripting examples 439

Creating a files and folders job for Windows
The following sample script will create a simple files and folders job forWindows. You will need tomodify this
script to fit your environment and configuration. If your source or target is a cluster, additional parameters must be
added.

The following lines are wrapped to the line below so that you can see all of the text on the page.

l $DtProtectionPath1 =
l $DtProtectionRule1 =
l $DtProtectionPath2 =
l $DtProtectionRule2 =
l $DtJobOptions =
l $DtJobGuidForFilesAndFolders =
l # $DtJobGuidForFilesAndFolders =

When re-creating a script like this for your environment, make sure you enter those commands on just
one line.

Sample script to create a simple files and folders job

Specify the variables to be used in the script

 # Source server and credentials
 $DtSourceName = "alpha"
 $DtSourceUserName = "domain\administrator"
 $DtSourcePassword = "password"

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

 # Type of workload you will be protecting and type of job you will be creating
 $DtWorkloadType = "FilesAndFolders"
 $DtJobType = "FilesAndFolders"

 # Paths on the source to protect
 $DtSourceProtectionPath1 = "C:\Dir1\"
 $DtSourceProtectionPath2 = "C:\Dir2\"

 # Path mapping that will be used when the job is created
 $DtSourcePath = "C:\"
 $DtTargetPath = "C:\Dir3\"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create source and target objects
$DtSource = New-DtServer -Name $DtSourceName -UserName $DtSourceUserName -Password $DtSourcePassword
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Create a workload
$DtWorkloadGUID = New-DtWorkload -ServiceHost $DtSource -WorkloadTypeName $DtWorkloadType

Specify the files and folders to protect
$DtProtectionPath1 = New-Object DoubleTake.Common.Contract.PhysicalRule -Property @
{Path=$DtSourceProtectionPath1}
$DtProtectionRule1 = Add-DtPhysicalRule -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid -Rule
$DtProtectionPath1
$DtProtectionPath2 = New-Object DoubleTake.Common.Contract.PhysicalRule -Property @

Chapter 5 Scripting examples 440

{Path=$DtSourceProtectionPath2}
$DtProtectionRule2 = Add-DtPhysicalRule -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid -Rule
$DtProtectionPath2
$DtWorkload = Get-DtWorkload -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid

Get the default job options that will be used to create the job
$DtJobOptions = Get-DtRecommendedJobOptions -ServiceHost $DtTarget -Source $DtSource -JobType $DtJobType
-Workload $DtWorkload

Sets the path mapping on the target to an all-to-one location
$DtJobOptions.JobOptions.CoreConnectionOptions.PathTransformations[0].SourcePath = $DtSourcePath
$DtJobOptions.JobOptions.CoreConnectionOptions.PathTransformations[0].TargetPath = $DtTargetPath

Create the job
$DtJobGuidForFilesAndFolders = New-DtJob -ServiceHost $DtTarget -Source $DtSource -JobType
FilesAndFolders -JobOptions $DtJobOptions.JobOptions

If you do not want to specify job options and instead use the default options,
remove the PathTransformations lines above and use the New-DtFilesAndFoldersJob
cmdlet, similar to the following line.
$DtJobGuidForFilesAndFolders = New-DtFilesAndFoldersJob -ServiceHost $DtTarget -Source $DtSource -Path
$DtSourcePath -JobOptions $DtJobOptions.JobOptions

Start the job
Start-DtJob -ServiceHost $DtTarget -JobId $DtJobGuidForFilesAndFolders

Close the connections for the server objects. You may want to consider using a finally block.
Disconnect-DtServer -ServiceHost $DtSource
Disconnect-DtServer -ServiceHost $DtTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 441

Creating a full server job for Windows
The following sample script will create a simple full server job forWindows . You will need tomodify this script to
fit your environment and configuration.

The following lines are wrapped to the line below so that you can see all of the text on the page.

l # Set-DtLogicalItemSelection
l $DtJobOptions =
l $DtJobGuidForFullServer =
l $TestServer =
l $DtJobOptions.JobOptions.FullServerTestFailoverOptions.TestFailoverServerCredential

When re-creating a script like this for your environment, make sure you enter those commands on just
one line.

Sample script to create a simple full server for Windows job

Specify the variables to be used in the script

 # Source server and credentials
 $DtSourceName = "alpha"
 $DtSourceUserName = "domain\administrator"
 $DtSourcePassword = "password"

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

 # Reserved IP addresses of source and target
 $DtSourceReservedIP = "10.10.10.29"
 $DtTargetReservedIP = "10.10.10.30"

 # Type of workload you will be protecting and type of job you will be creating
 $DtWorkloadType = "FullServerFailover"
 $DtJobType = "FullServerFailover"

 # Test failover server
 $DtTestServerIP = "112.42.75.60"
 $DtTestServerUserName = "domain\administrator"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create source and target objects
$DtSource = New-DtServer -Name $DtSourceName -UserName $DtSourceUserName -Password $DtSourcePassword
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Create a workload
$DtWorkloadGUID = New-DtWorkload -ServiceHost $DtSource -WorkloadTypeName $DtWorkloadType

This workload, by default, selects all volumes for protection
If desired, exclude any volumes from protection, however, be careful
when excluding data as it may compromise the integrity of your installed applications
Uncomment and use the following line, substituting G:\for the volume you want to exclude
Repeat the line to exclude multiple volumes
Set-DtLogicalItemSelection -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid -LogicalPath "G:\" -
Unselect

Get the workload definition including the workload and logical items
$DtWorkload = Get-DtWorkload -ServiceHost $DtSource -WorkloadId $DtWorkloadGUID

Get the default options that will be used to create the job

Chapter 5 Scripting examples 442

$DtJobOptions = Get-DtRecommendedJobOptions -ServiceHost $DtTarget -Source $DtSource -JobType $DtJobType
-Workload $DtWorkload

Specify the reserved addresses set earlier to be used in the job options to be used for reverse
$DtJobOptions.JobOptions.SystemStateOptions.SourceReservedAddress = $DtSourceReservedIP
$DtJobOptions.JobOptions.SystemStateOptions.TargetReservedAddress = $DtTargetReservedIP

If you want to disable reverse, you would not need the two lines above.
Instead, use the following line to disable reverse.
$DtJobOptions.JobOptions.FullServerFailoverOptions.CreateBackupConnection = $false

Configure a third server for test failover
$DtCredentialEncrypted = Get-Credential $DtTestServerUserName
$TestServer = New-DtUri -NetworkId $DtTestServerIP -Credential $DtCredentialEncrypted -Scheme
"SchemeName"
$DtJobOptions.JobOptions.FullServerTestFailoverOptions.TestFailoverServerCredential.TestFailoverServerHos
tUri = $TestServer
$DtJobOptions.JobOptions.FullServerTestFailoverOptions.DeleteSnapshots = $true
$DtJobOptions.JobOptions.FullServerTestFailoverOptions.TestFailoverServerAddress = $DtTestServerIP

Create the job
$DtJobGuidForFullServer = New-DtJob -ServiceHost $DtTarget -Source $DtSource -JobType $DtJobType -Options
$DtJobOptions.JobOptions

Start the job
Start-DtJob -ServiceHost $DtTarget -JobId $DtjobGuidForFullServer

Close the connections for the server objects. You may want to consider using a finally block.
Disconnect-DtServer -ServiceHost $DtSource
Disconnect-DtServer -ServiceHost $DtTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 443

Creating a full server job for Linux
The following sample script will create a simple full server job for Linux. You will need tomodify this script to fit
your environment and configuration.

The following lines are wrapped to the line below so that you can see all of the text on the page.

l # Set-DtLogicalItemSelection
l $DtJobOptions =
l $DtJobGuidForLFFO =
l $TestServer =
l $DtJobOptions.JobOptions.FullServerTestFailoverOptions.TestFailoverServerCredential

When re-creating a script like this for your environment, make sure you enter those commands on just
one line.

Sample script to create a simple full server for Linux job

Specify the variables to be used in the script

 # Source server and credentials
 # Be sure to include the communication port with the source server
 $DtSourceName = "112.42.7.63:6325"
 $DtSourceUserName = "root"
 $DtSourcePassword = "password"

 # Target server and credentials
 # Be sure to include the communication port with the target server
 $DtTargetName = "112.42.9.93:6325"
 $DtTargetUserName = "root"
 $DtTargetPassword = "password"

 # Reserved IP addresses
 $DtSourceReservedIP = "10.10.10.29"
 $DtTargetReservedIP = "10.10.10.30"

 # Type of workload you will be protecting and type of job you will be creating
 $DtWorkloadType = "LinuxFullServerFailover"
 $DtJobType = "LinuxFullServerFailover"

 # Test failover server
 $DtTestServerIP = "112.42.75.60"
 $DtTestServerUserName = "domain\administrator"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create source and target objects
$DtSource = New-DtServer -Name $DtSourceName -UserName $DtSourceUserName -Password $DtSourcePassword
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Create a workload
$DtWorkloadGUID = New-DtWorkload -ServiceHost $DtSource -WorkloadTypeName $DtWorkloadType

This workload, by default, selects all volumes for protection
If desired, exclude any volumes from protection, however, be careful
when excluding data as it may compromise the integrity of your installed applications
Uncomment and use the following line, substituting G:\for the volume you want to exclude
Repeat the line to exclude multiple volumes
Set-DtLogicalItemSelection -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid -LogicalPath "G:\" -
Unselect

Get the workload definition including the workload and logical items
$DtWorkload = Get-DtWorkload -ServiceHost $DtSource -WorkloadId $DtWorkloadGUID

Chapter 5 Scripting examples 444

Get the default options that will be used to create the job
$DtJobOptions = Get-DtRecommendedJobOptions -ServiceHost $DtTarget -Source $DtSource -JobType $DtJobType
-Workload $DtWorkload

Specify the reserved addresses set earlier to be used in the job options to be used for reverse
$DtJobOptions.JobOptions.SystemStateOptions.SourceReservedAddress = $DtSourceReservedIP
$DtJobOptions.JobOptions.SystemStateOptions.TargetReservedAddress = $DtTargetReservedIP

If you want to disable reverse, you would not need the two lines above.
Instead, use the following line to disable reverse.
$DtJobOptions.JobOptions.FullServerFailoverOptions.CreateBackupConnection = $false

Configure a third server for test failover
$DtCredentialEncrypted = Get-Credential $DtTestServerUserName
$TestServer = New-DtUri -NetworkId $DtTestServerIP -Credential $DtCredentialEncrypted -Scheme
"SchemeName"
$DtJobOptions.JobOptions.FullServerTestFailoverOptions.TestFailoverServerCredential.TestFailoverServerHos
tUri = $TestServer
$DtJobOptions.JobOptions.FullServerTestFailoverOptions.DeleteSnapshots = $true
$DtJobOptions.JobOptions.FullServerTestFailoverOptions.TestFailoverServerAddress = $DtTestServerIP

Create the job
$DtJobGuidForLFFO = New-DtJob -ServiceHost $DtTarget -Source $DtSource -JobType $DtJobType -Options
$DtJobOptions.JobOptions

Start the job
Start-DtJob -ServiceHost $DtTarget -JobId $DtjobGuidForLFFO

Close the connections for the server objects. You may want to consider using a finally block.
Disconnect-DtServer -ServiceHost $DtSource
Disconnect-DtServer -ServiceHost $DtTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 445

Creating a SQL job
The following sample script will create a simple SQL job. You will need tomodify this script to fit your environment
and configuration. If your source or target is a cluster, additional parameters must be added.

The following lines are wrapped to the line below so that you can see all of the text on the page.

l $DtProtectionItems =
l # $RootItem =
l # | ForEach-Object
l # $DtProtectionItems
l $DtJobOptions =
l $DtJobGuidForSQL =

When re-creating a script like this for your environment, make sure you enter those commands on just
one line.

Sample script to create a simple SQL job

Specify the variables to be used in the script

 # Source server and credentials
 $DtSourceName = "alpha"
 $DtSourceUserName = "domain\administrator"
 $DtSourcePassword = "password"

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

 # Type of workload you will be protecting and type of job you will be creating
 $DtWorkloadType = "SQL"
 $DtJobType = "SQL"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create source and target objects
$DtSource = New-DtServer -Name $DtSourceName -UserName $DtSourceUserName -Password $DtSourcePassword
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Create a workload
$DtWorkloadGUID = New-DtWorkload -ServiceHost $DtSource -WorkloadTypeName $DtWorkloadType

Add what you want to protect to the workload. These lines will, by default, select all instances
$DtLogicalItem = Get-DtLogicalItem -ServiceHost $DtSource -WorkloadId $DtWorkloadGUID
$DtProtectionItems = Set-DtLogicalItemSelection -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid -
LogicalPath $DtLogicalItem.Path
$DtWorkload = Get-DtWorkload -ServiceHost $DtSource -WorkloadId $DtWorkloadGUID

If you do not want to protect all of the instances, as the default does, comment out the
three lines above and uncomment and use the following group of lines.
$RootItems = Get-DtLogicalItem -ServiceHost $DtSource -WorkloadId $DtWorkloadGUID
$RootItems | Format-List
$RootItem = (Get-DtLogicalItem -ServiceHost $DtSource -WorkloadId $DtWorkloadGUID | Where-Object
{$_.Path -eq "SQL:\"})[0]
The following lines unselect all of the instances that were selected by default
Get-DtLogicalItem -ServiceHost $DtSource -WorkloadId $DtWorkloadGUID -RefItem $RootItem `
| ForEach-Object {Set-DtLogicalItemSelection -ServiceHost $DtSource -WorkloadId $DtWorkloadGUID -
LogicalPath $_.Path -Unselect}
Select the instance that you want to protect by replacing instance_name with the name of the instance

Chapter 5 Scripting examples 446

For example, SQL:\instance_name would be SQL:\PROD for an instance called PROD
$DtProtectionItems = Set-DtLogicalItemSelection -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid -
LogicalPath "SQL:\instance_name"
$DtWorkload = Get-DtWorkload -ServiceHost $DtSource -WorkloadId $DtWorkloadGUID

Get the default job options that will be used to create the job
$DtJobOptions = Get-DtRecommendedJobOptions -ServiceHost $DtTarget -Source $DtSource -JobType $DtJobType
-Workload $DtWorkload

Create the job
$DtJobGuidForSQL = New-DtJob -ServiceHost $DtTarget -Source $DtSource -JobType $DtJobType -Options
$DtJobOptions.JobOptions

Start the job
Start-DtJob -ServiceHost $DtTarget -JobId $DtJobGuidForSQL

Close the connections for the server objects. You may want to consider using a finally block.
Disconnect-DtServer -ServiceHost $DtSource
Disconnect-DtServer -ServiceHost $DtTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 447

Creating a full server to ESX job for Windows
The following sample script will create a full server to ESX job forWindows. It includes options for configuring test
failover and reverse. You will need tomodify this script to fit your environment and configuration.

The following lines are wrapped to the line below so that you can see all of the text on the page.

l $DtReverseAppliance=
l $VimTarget =
l # Set-DtLogicalItemSelection
l $DtJobOptions =
l The comments in the Configure test failover section
l $DTJobOptions.JobOptions.VRAOptions.SourceApplianceInfo
l $DtJobGuidForEVRA =

When re-creating a script like this for your environment, make sure you enter those commands on just
one line.

Sample script to create a full server to ESX job
Including options for test failover and reverse

Specify the variables to be used in the script

 # Source server and credentials
 $DtSourceName = "alpha"
 $DtSourceUserName = "domain\administrator"
 $DtSourcePassword = "password"

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

 # If you are configuring a reverse job
 # Reverse target appliance and credentials
 # This may or may not be the same as the target for the forward protection
 $DtReverseTargetName = "gamma"
 $DtReverseTargetUri = "dtms://112.42.76.3:6325"
 $DtReverseTargetRoute = "112.42.76.3"
 $DtReverseTargetUserName = "domain\administrator"
 $DtReverseTargetPassword = "password"

 # ESX host and credentials
 # If you are using vCenter, specify your vCenter.
 # Only specify an ESX host if you are using ESX standalone.
 $DtHostName = "112.42.56.14"
 $DtHostUserName = "root"
 $DtHostPassword = "password"

 # If you are configuring a reverse job
 # Reverse ESX host and credentials
 # If you are using vCenter, specify your vCenter.
 # Only specify an ESX host if you are using ESX standalone.
 $DtReverseHostName = "112.42.12.7"
 $DtReverseHostUserName = "root"
 $DtReverseHostPassword = "password"

 # Type of workload you will be protecting and type of job you will be creating
 $DtWorkloadType = "VRA"
 $DtJobType = "VRA"

 # VM display name
 # This name must be unique within your environment and different

Chapter 5 Scripting examples 448

 # from the existing directory location name if you are reusing an existing disk
 $DisplayName = "Name"

 # Datastore location - GUID assigned to the datastore
 # You can find this GUID in your vSphere or VMware web client
 $DatastoreLocation = "/vmfs/volumes/529a027d-b4ba1124-b1c0-614c42bc0717"

 # If you are configure a reverse job, datastore location
 $ReverseDatastoreLocation = "/vmfs/volumes/630b128d-c5ca2235-b2d1-725d53cd1828"

 # Existing disk - Specify only if you want to reuse an existing disk
 $ExistingDisk = "Dir/SubDir/filename.vmdk”

 # Type of disk. Use Dynamic for ESX thin disks, Fixed for ESX thick disks
 # and Flat Disk for ESX flat disks
 $DiskType = "Dynamic"

 # Test failover configuration
 $SourceVSwitch = "Local Area Connection"
 $TargetVSwitch = "Internal Network"

 # Reverse options
 $ReverseDisplayName = "ReverseName"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create source and target objects
$DtSource = New-DtServer -Name $DtSourceName -UserName $DtSourceUserName -Password $DtSourcePassword
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

If you are configuring a reverse job, create reverse appliance object
$DtReverseAppliance = New-DtServer -Name $DtReverseTargetName -UserName $DtReverseTargetUserName -
Password $DtReverseTargetPassword -Role ReverseHelperRole

Create ESX host object
If you are using vCenter, specify your vCenter.
Only specify an ESX host if you are using ESX standalone.
$VimTarget = New-DtServer -Name $DtHostName -Username $DtHostUserName -Password $DtHostPassword -Role
TargetVimServer

If you are configuring a reverse job, create reverse ESX host object
$DtReverseHost = New-DtServer -Name $DtReverseHostName -UserName $DtReverseHostUserName -Password
$DtReverseHostPassword -Role ReverseVimServer

All roles
$OtherServers = @($VimTarget,$DtReverseHost,$DtReverseAppliance)

Create a workload
$DtWorkloadGUID = New-DtWorkload -ServiceHost $DtSource -WorkloadTypeName $DtWorkloadType

This workload, by default, selects all volumes for protection
If desired, exclude any volumes from protection, however, be careful
when excluding data as it may compromise the integrity of your installed applications
Uncomment and use the following line, substituting G:\for the volume you want to exclude
Repeat the line to exclude multiple volumes
Set-DtLogicalItemSelection -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid -LogicalPath "G:\" -
Unselect

Get the workload definition including the workload and logical items
$DtWorkload = Get-DtWorkload -ServiceHost $DtSource -WorkloadId $DtWorkloadGUID

Get the default job options that will be used to create the job
$DtJobOptions = Get-DtRecommendedJobOptions -ServiceHost $DtTarget -Source $DtSource -OtherServers
$OtherServers -JobType $DtJobType -Workload $DtWorkload

Set the display name in the job options
$DtJobOptions.JobOptions.VraOptions.ReplicaVmInfo.DisplayName = $DisplayName

Set the location where you want the VM config files to be located
$DtJobOptions.JobOptions.VRAOptions.ReplicaVMInfo.Path = $DatastoreLocation

Set the location where you want the VM disk files to be located
foreach($disk in $DtJobOptions.JobOptions.VRAOptions.Volumes)
{

Chapter 5 Scripting examples 449

 $disk.VirtualDiskPath = $DatastoreLocation
 $disk.DiskProvisioningType = $DiskType
 # If you want to reuse an existing disk, you will need to identify the path
 # to use for each $disk using PreexistingDiskPath
}

Configure test failover
$DTJobOptions.JobOptions.VRAOptions.TestFailover.DeleteVirtualDisks=$true
If you want to connect the replica to the network, uncomment and use the following lines
Without these lines, the test failover will be completed without network connectivity
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover = New-Object -TypeName
'DoubleTake.Virtualization.Contract.VirtualSwitchMapping'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[0].SourceVirtualSwitch = New-
Object -TypeName 'DoubleTake.Virtualization.Contract.VirtualSwitchInfo'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[0].TargetVirtualSwitch = New-
Object -TypeName 'DoubleTake.Virtualization.Contract.VirtualSwitchInfo'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[0].SourceVirtualSwitch.Label =
"Name of source adapter goes here"
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[0].TargetVirtualSwitch.Label =
"Name of target virtual switch goes here"
If you have more than one adapter, you need to add the additional adapters to the
VirtualSwitchMappingTestFailover array
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover += New-Object -TypeName
'DoubleTake.Virtualization.Contract.VirtualSwitchMapping'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[1].TargetVirtualSwitch = New-
Object -TypeName 'DoubleTake.Virtualization.Contract.VirtualSwitchInfo'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[1].SourceVirtualSwitch = New-
Object -TypeName 'DoubleTake.Virtualization.Contract.VirtualSwitchInfo'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[1].SourceVirtualSwitch.Label =
"Name of another source adapter goes here"
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[1].TargetVirtualSwitch.Label =
"Name of target virtual switch goes here"

Configure reverse job options
Identify the reverse host
$DTJobOptions.JobOptions.VRAOptions.ReverseOptions.ReverseVMwareServer = $DtReverseHost.Uri
Identify the reverse appliance by creating a new VMInfo object
$DTJobOptions.JobOptions.VRAOptions.SourceApplianceInfo = New-Object -TypeName
'Doubletake.Virtualization.Contract.VMInfo'
$DTJobOptions.JobOptions.VRAOptions.SourceApplianceInfo.Address = $DtReverseTargetName
$DTJobOptions.JobOptions.VRAOptions.SourceApplianceInfo.GuestUri = $DtReverseTargetURI
Identify the reverse route
$DTJobOptions.JobOptions.VRAOptions.ReverseRoute = $DtReverseTargetRoute
Identify the reverse options
$DTJobOptions.JobOptions.VRAOptions.ReverseOptions.VmName = $ReverseDisplayName
$DTJobOptions.JobOptions.VRAOptions.ReverseOptions.VmPath = $ReverseDatastoreLocation
foreach($reverseDisk in $DtJobOptions.JobOptions.VRAOptions.ReverseOptions.Volumes)
{
 $reverseDisk.VirtualDiskPath = $ReverseDatastoreLocation
 $reverseDisk.DiskProvisioningType = $DiskType
 # If you want to reuse an existing disk, you will need to identify the path
 # to use for each $disk using PreexistingDiskPath
}

Create the job
$DtJobGuidForEVRA = New-DtJob -ServiceHost $DtTarget -Source $DtSource -OtherServers $OtherServers -
JobType $DtJobType -JobOptions $DtJobOptions.JobOptions

Start the job
Start-DtJob -ServiceHost $DtTarget -JobId $DtJobGuidForEVRA

Close the connections for the server objects. You may want to consider using a finally block.
Disconnect-DtServer -ServiceHost $DtSource
Disconnect-DtServer -ServiceHost $DtTarget
Disconnect-DtServer -ServiceHost $VimTarget
Disconnect-DtServer -ServiceHost $DtReverseAppliance
Disconnect-DtServer -ServiceHost $DtReverseHost

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 450

Creating a full server to ESX job for Linux
The following sample script will create a simple full server to ESX job for Linux. You will need tomodify this script
to fit your environment and configuration.

The following lines are wrapped to the line below so that you can see all of the text on the page.

l $VimTarget =
l # Set-DtLogicalItemSelection
l $DtJobOptions =
l $ExistingDisk +=
l $ExistingDisk +=
l $ExistingDisk +=
l $DtJobGuidForLVRA =

When re-creating a script like this for your environment, make sure you enter those commands on just
one line.

Sample script to create a simple full server to ESX job for Linux

Specify the variables to be used in the script

 # Source server and credentials
 # Be sure to include the communication port with the source server
 $DtSourceName = "112.42.7.63:6325"
 $DtSourceUserName = "root"
 $DtSourcePassword = "password"

 # Target appliance and credentials
 # Be sure to include the communication port with the target
 $DtTargetName = "112.42.9.93:6325"
 $DtTargetUserName = "root"
 $DtTargetPassword = "password"

 # ESX host and credentials
 # If you are using vCenter, specify your vCenter.
 # Only specify an ESX host if you are using ESX standalone.
 $DtHostName = "112.42.56.14"
 $DtHostUserName = "root"
 $DtHostPassword = "password"

 # Type of workload you will be protecting and type of job you will be creating
 $DtWorkloadType = "Lvra"
 $DtJobType = "Lvra"

 # VM display name
 # This name must be unique within your environment and different
 # from the existing directory location name if you are reusing an existing disk
 $DisplayName = "Name"

 # Datastore location - GUID assigned to the datastore
 # You can find this GUID in your vSphere or VMware web client
 $DatastoreLocation = "/vmfs/volumes/529a027d-b4ba1124-b1c0-614c42bc0717"

 # Existing disk - Specify only if you want to reuse an existing disk
 # If your disks are mounted directly (without using LVM2), specify the mount name and location
 # If your disks are in an LVM2 volume group, specify the LVM name and location
 # If you are using both, specify both
 $MountName = "/boot"
 $MountLocation = "Dir1/DiskName__boot.vmdk"
 $LvmName1 = "VG_Name"
 $LvmLocation1 = "Dir1/DiskName_VG_Name_PhysicalVolume0.vmdk"
 $LvmName2 = "VG_Name"

Chapter 5 Scripting examples 451

 $LvmLocation2 = "Dir1/DiskName_VG_Name_PhysicalVolume1.vmdk"

 # Test failover configuration
 $SourceVSwitch = "Local Area Connection"
 $TargetVSwitch = "Internal Network"
 $TestDisplayName = "TestName"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create source and target objects
$DtSource = New-DtServer -Name $DtSourceName -UserName $DtSourceUserName -Password $DtSourcePassword
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Create ESX host appliance object
If you are using vCenter, specify your vCenter.
Only specify an ESX host if you are using ESX standalone.
$VimTarget = New-DtServer -Name $DtHostName -Username $DtHostUserName -Password $DtHostPassword -Role
TargetVimServer
$OtherServers = @($VimTarget)

Create a workload
$DtWorkloadGUID = New-DtWorkload -ServiceHost $DtSource -WorkloadTypeName $DtWorkloadType

This workload, by default, selects all volumes for protection
If desired, exclude any volumes from protection, however, be careful
when excluding data as it may compromise the integrity of your installed applications
Uncomment and use the following line, substituting G:\for the volume you want to exclude
Repeat the line to exclude multiple volumes
Set-DtLogicalItemSelection -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid -LogicalPath "G:\" -
Unselect

Get the workload definition including the workload and logical items
$DtWorkload = Get-DtWorkload -ServiceHost $DtSource -WorkloadId $DtWorkloadGUID

Get the default job options that will be used to create the job
$DtJobOptions = Get-DtRecommendedJobOptions -ServiceHost $DtTarget -Source $DtSource -OtherServers
$OtherServers -JobType $DtJobType -Workload $DtWorkload

Set the display name
$DtJobOptions.JobOptions.VraOptions.ReplicaVmInfo.DisplayName = $DisplayName

Set the location where you want the VM config files to be located
$DtJobOptions.JobOptions.VRAOptions.ReplicaVMInfo.Path = $DatastoreLocation

Uncomment and use the following block only if you want to reuse an existing
disk with a per volume disk configuration strategy
Specify the existing disk to use
<#
 $ExistingDisks = @()
 $ExistingDisksDatastoreLocation = $ReplicaVmDatastoreLocation
 $ExistingDisks += @{ mountPoint = $MountName; dsLoc = $ExistingDisksDatastoreLocation; vmdkPath =
$MountLocation }
 $ExistingDisks += @{ vgName = $LvmName1; dsLoc = $ExistingDisksDatastoreLocation; vmdkPath =
$LvmLocation1 }
 $ExistingDisks += @{ vgName = $LvmName2; dsLoc = $ExistingDisksDatastoreLocation; vmdkPath =
$LvmLocation2 }

 $modifiedVolumeGroups = @{}
 foreach($existingDisk in $ExistingDisks)

{
 if ($existingDisk.ContainsKey("mountPoint"))

{
 $mntpt = $existingDisk["mountPoint"]
 if ($mntpt)

{
 foreach($mountedPartition in $DtJobOptions.JobOptions.VRAOptions.Volumes)

{
 if ($mntpt -eq $mountedPartition.Name)

{
 $mountedPartition.VirtualDiskPath = $existingDisk["dsLoc"]
 $mountedPartition.PreexistingDiskPath = $existingDisk["vmdkPath"]
 break
 }
 }

Chapter 5 Scripting examples 452

 }
 }
 elseif ($existingDisk.ContainsKey("vgName"))

{
 # Find the matching VolumeGroup object, clearing any PhysicalVolume instances defined
 # by Get-DtRecommendedJobOptions
 $vgName = $existingDisk["vgName"]
 $matchingVG = $null
 if ($modifiedVolumeGroups.ContainsKey($vgName))

{
 $matchingVG = $modifiedVolumeGroups[$vgName]
 }
 else

{
 foreach ($vg in $DtJobOptions.JobOptions.VRAOptions.LvmOptions.VolumeGroup)

{
 if ($vg.Name -eq $vgName)

{
 $matchingVG = $vg
 $matchingVG.PhysicalVolume = @()
 $modifiedVolumeGroups[$vgName] = $matchingVG
 break
 }
 }
 }
 # Add this existing disk to the VolumeGroup as a PhysicalVolume
 if ($matchingVG)

{
 $newPV = New-Object -TypeName DoubleTake.Core.Contract.UVRA.PhysicalVolume
 $newPV.VirtualDiskPath = $existingDisk["dsLoc"]
 $newPV.PreexistingDiskPath = $existingDisk["vmdkPath"]
 $matchingVG.PhysicalVolume += $newPV
 }
 else

{
 Write-Error "Volume Groups not found for " + $matchingVG
 }
 }
 }
#>

Configure test failover
$DTJobOptions.JobOptions.VRAOptions.TestFailover.ReplicaDisplayName = $TestName
$DTJobOptions.JobOptions.VRAOptions.TestFailover.DeleteVirtualDisks=$true
If you want to connect the replica to the network, uncomment and use the following lines
Without these lines, the test failover will be completed without network connectivity
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover = New-Object -TypeName
'DoubleTake.Virtualization.Contract.VirtualSwitchMapping'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[0].SourceVirtualSwitch = New-
Object -TypeName 'DoubleTake.Virtualization.Contract.VirtualSwitchInfo'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[0].TargetVirtualSwitch = New-
Object -TypeName 'DoubleTake.Virtualization.Contract.VirtualSwitchInfo'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[0].SourceVirtualSwitch.Label =
"Name of source adapter goes here"
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[0].TargetVirtualSwitch.Label =
"Name of target virtual switch goes here"
If you have more than one adapter, you need to add the additional adapters to the
VirtualSwitchMappingTestFailover array
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover += New-Object -TypeName
'DoubleTake.Virtualization.Contract.VirtualSwitchMapping'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[1].TargetVirtualSwitch = New-
Object -TypeName 'DoubleTake.Virtualization.Contract.VirtualSwitchInfo'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[1].SourceVirtualSwitch = New-
Object -TypeName 'DoubleTake.Virtualization.Contract.VirtualSwitchInfo'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[1].SourceVirtualSwitch.Label =
"Name of another source adapter goes here"
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[1].TargetVirtualSwitch.Label =
"Name of target virtual switch goes here"

Create the job
$DtJobGuidForLVRA = New-DtJob -ServiceHost $DtTarget -Source $DtSource -OtherServers $OtherServers -
JobType $DtJobType -JobOptions $DtJobOptions.JobOptions

Start the job
Start-DtJob -ServiceHost $DtTarget -JobId $DtJobGuidForLVRA

Chapter 5 Scripting examples 453

Close the connections for the server objects. You may want to consider using a finally block.
Disconnect-DtServer -ServiceHost $DtSource
Disconnect-DtServer -ServiceHost $DtTarget
Disconnect-DtServer -ServiceHost $VimTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 454

Creating a full server to Hyper-V job
The following sample script will create a simple full server to Hyper-V job. You will need tomodify this script to fit
your environment and configuration. If your source or target is a cluster, additional parameters must be added.

The following lines are wrapped to the line below so that you can see all of the text on the page.

l $DtLogicalItems =
l # Set-DtLogicalItemSelection
l $DtJobOptions =
l $DtJobGuidForHVRA =

When re-creating a script like this for your environment, make sure you enter those commands on just
one line.

Sample script to create a simple full server to Hyper-V job

Specify the variables to be used in the script

 # Source server and credentials
 $DtSourceName = "alpha"
 $DtSourceUserName = "domain\administrator"
 $DtSourcePassword = "password"

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

 # Type of workload you will be protecting and type of job you will be creating
 $DtWorkloadType = "VRA"
 $DtJobType = "VRA"

 # Test failover configuration
 $SourceVSwitch = "Local Area Connection"
 $TargetVSwitch = "Internal Network"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create source and target objects
$DtSource = New-DtServer -Name $DtSourceName -UserName $DtSourceUserName -Password $DtSourcePassword
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Create a workload
$DtWorkloadGUID = New-DtWorkload -ServiceHost $DtSource -WorkloadTypeName $DtWorkloadType

This workload, by default, selects all volumes for protection
If desired, exclude any volumes from protection, however, be careful
when excluding data as it may compromise the integrity of your installed applications
Uncomment and use the following line, substituting G:\for the volume you want to exclude
Repeat the line to exclude multiple volumes
Set-DtLogicalItemSelection -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid -LogicalPath "G:\" -
Unselect

Get the workload definition including the workload and logical items
$DtWorkload = Get-DtWorkload -ServiceHost $DtSource -WorkloadId $DtWorkloadGUID

Get the default job options that will be used to create the job
$DtJobOptions = Get-DtRecommendedJobOptions -ServiceHost $DtTarget -Source $DtSource -JobType $DtJobType
-Workload $DtWorkload

Configure test failover
$DTJobOptions.JobOptions.VRAOptions.TestFailover.DeleteVirtualDisks=$true
If you want to connect the replica to the network, uncomment and use the following lines

Chapter 5 Scripting examples 455

Without these lines, the test failover will be completed without network connectivity
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover = New-Object -TypeName
'DoubleTake.Virtualization.Contract.VirtualSwitchMapping'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[0].SourceVirtualSwitch = New-
Object -TypeName 'DoubleTake.Virtualization.Contract.VirtualSwitchInfo'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[0].TargetVirtualSwitch = New-
Object -TypeName 'DoubleTake.Virtualization.Contract.VirtualSwitchInfo'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[0].SourceVirtualSwitch.Label =
"Name of source adapter goes here"
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[0].TargetVirtualSwitch.Label =
"Name of target virtual switch goes here"
If you have more than one adapter, you need to add the additional adapters to the
VirtualSwitchMappingTestFailover array
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover += New-Object -TypeName
'DoubleTake.Virtualization.Contract.VirtualSwitchMapping'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[1].TargetVirtualSwitch = New-
Object -TypeName 'DoubleTake.Virtualization.Contract.VirtualSwitchInfo'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[1].SourceVirtualSwitch = New-
Object -TypeName 'DoubleTake.Virtualization.Contract.VirtualSwitchInfo'
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[1].SourceVirtualSwitch.Label =
"Name of another source adapter goes here"
$DtJobOptions.JobOptions.VRAOptions.VirtualSwitchMappingTestFailover[1].TargetVirtualSwitch.Label =
"Name of target virtual switch goes here"

Create the job
$DtJobGuidForHVRA = New-DtJob -ServiceHost $DtTarget -Source $DtSource -JobType $DtJobType -JobOptions
$DtJobOptions.JobOptions

Start the job
Start-DtJob -ServiceHost $DtTarget -JobId $DtJobGuidForHVRA

Close the connections for the server objects. You may want to consider using a finally block.
Disconnect-DtServer -ServiceHost $DtSource
Disconnect-DtServer -ServiceHost $DtTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 456

Creating a files and folders migration job for Windows
The following sample script will create a simple files and folders migration job forWindows. You will need to
modify this script to fit your environment and configuration.

The following lines are wrapped to the line below so that you can see all of the text on the page.

l $DtMigrationPath1 =
l $DtMigrationRule1 =
l $DtMigrationPath2 =
l $DtMigrationRule2 =
l $DtJobOptions =
l $DtJobGuidForDataMigration =

When re-creating a script like this for your environment, make sure you enter those commands on just
one line.

Sample script to create a simple data migration job

Specify the variables to be used in the script

 # Source server and credentials
 $DtSourceName = "alpha"
 $DtSourceUserName = "domain\administrator"
 $DtSourcePassword = "password"

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

 # Type of workload you will be migrating and type of job you will be creating
 $DtWorkloadType = "MoveDataOnlyMigration"
 $DtJobType = "MoveDataOnlyMigration"

 # Paths on the source to migrate
 $DtSourceMigrationPath1 = "C:\Dir1\"
 $DtSourceMigrationPath2 = "C:\Dir2\"

 # Path mapping that will be used when the job is created
 $DtSourcePath = "C:\"
 $DtTargetPath = "C:\Dir3\"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create source and target objects
$DtSource = New-DtServer -Name $DtSourceName -UserName $DtSourceUserName -Password $DtSourcePassword
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Create a workload
$DtWorkloadGUID = New-DtWorkload -ServiceHost $DtSource -WorkloadTypeName $DtWorkloadType

Specify the files and folders to migrate
$DtMigrationPath1 = New-Object DoubleTake.Common.Contract.PhysicalRule -Property @
{Path=$DtSourceMigrationPath1}
$DtMigrationRule1 = Add-DtPhysicalRule -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid -Rule
$DtMigrationPath1
$DtMigrationPath2 = New-Object DoubleTake.Common.Contract.PhysicalRule -Property @
{Path=$DtSourceMigrationPath2}
$DtMigrationRule2 = Add-DtPhysicalRule -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid -Rule
$DtMigrationPath2
$DtWorkload = Get-DtWorkload -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid

Chapter 5 Scripting examples 457

Get the default job options that will be used to create the job
$DtJobOptions = Get-DtRecommendedJobOptions -ServiceHost $DtTarget -Source $DtSource -JobType $DtJobType
-Workload $DtWorkload

Sets the path mapping on the target to an all-to-one location
$DtJobOptions.JobOptions.CoreConnectionOptions.PathTransformations[0].SourcePath = $DtSourcePath
$DtJobOptions.JobOptions.CoreConnectionOptions.PathTransformations[0].TargetPath = $DtTargetPath

Create the job
$DtJobGuidForDataMigration = New-DtJob -ServiceHost $DtTarget -Source $DtSource -JobType $DtJobType -
JobOptions $DtJobOptions.JobOptions

Start the job
Start-DtJob -ServiceHost $DtTarget -JobId $DtJobGuidForDataMigration

Close the connections for the server objects. You may want to consider using a finally block.
Disconnect-DtServer -ServiceHost $DtSource
Disconnect-DtServer -ServiceHost $DtTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 458

Creating a full server migration job for Windows
The following sample script will create a simple full server migration job forWindows. You will need tomodify this
script to fit your environment and configuration.

The following lines are wrapped to the line below so that you can see all of the text on the page.

l # Set-DtLogicalItemSelection
l $DtJobOptions =
l $DtJobGuidForFullServerMigration =

When re-creating a script like this for your environment, make sure you enter those commands on just
one line.

Sample script to create a simple full server migration job

Specify the variables to be used in the script

 # Source server and credentials
 $DtSourceName = "alpha"
 $DtSourceUserName = "domain\administrator"
 $DtSourcePassword = "password"

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

 # Type of workload you will be protecting and type of job you will be creating
 $DtWorkloadType = "MoveServerMigration"
 $DtJobType = "MoveServerMigration"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create source and target objects
$DtSource = New-DtServer -Name $DtSourceName -UserName $DtSourceUserName -Password $DtSourcePassword
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Create a workload
$DtWorkloadGUID = New-DtWorkload -ServiceHost $DtSource -WorkloadTypeName $DtWorkloadType

This workload, by default, selects all volumes for protection
If desired, exclude any volumes from protection, however, be careful
when excluding data as it may compromise the integrity of your installed applications
Uncomment and use the following line, substituting G:\for the volume you want to exclude
Repeat the line to exclude multiple volumes
Set-DtLogicalItemSelection -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid -LogicalPath "G:\" -
Unselect

Get the workload definition including the workload and logical items
$DtWorkload = Get-DtWorkload -ServiceHost $DtSource -WorkloadId $DtWorkloadGUID

Get the default options that will be used to create the job
$DtJobOptions = Get-DtRecommendedJobOptions -ServiceHost $DtTarget -Source $DtSource -JobType $DtJobType
-Workload $DtWorkload

Create the job
$DtJobGuidForFullServerMigration = New-DtJob -ServiceHost $DtTarget -Source $DtSource -JobType $DtJobType
-Options $DtJobOptions.JobOptions

Start the job
Start-DtJob -ServiceHost $DtTarget -JobId $DtJobGuidForFullServerMigration

Close the connections for the server objects. You may want to consider using a finally block.
Disconnect-DtServer -ServiceHost $DtSource

Chapter 5 Scripting examples 459

Disconnect-DtServer -ServiceHost $DtTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 460

Creating a full server to ESX migration job for Windows
The following sample script will create a simple full server to ESX migration job forWindows. You will need to
modify this script to fit your environment and configuration.

The following lines are wrapped to the line below so that you can see all of the text on the page.

l $VimTarget =
l # Set-DtLogicalItemSelection
l $DtJobOptions =
l $DtJobGuidForVraMove =

When re-creating a script like this for your environment, make sure you enter those commands on just
one line.

Sample script to create a simple full server to ESX migration job

Specify the variables to be used in the script

 # Source server and credentials
 $DtSourceName = "alpha"
 $DtSourceUserName = "domain\administrator"
 $DtSourcePassword = "password"

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

 # ESX host and credentials
 # If you are using vCenter, specify your vCenter.
 # Only specify an ESX host if you are using ESX standalone.
 $DtHostName = "112.42.56.14"
 $DtHostUserName = "root"
 $DtHostPassword = "password"

 # Type of workload you will be protecting and type of job you will be creating
 $DtWorkloadType = "VraMove"
 $DtJobType = "VraMove"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create source and target objects
$DtSource = New-DtServer -Name $DtSourceName -UserName $DtSourceUserName -Password $DtSourcePassword
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Create ESX host appliance object
If you are using vCenter, specify your vCenter.
Only specify an ESX host if you are using ESX standalone.
$VimTarget = New-DtServer -Name $DtHostName -Username $DtHostUserName -Password $DtHostPassword -Role
TargetVimServer
$OtherServers = @($VimTarget)

Create a workload
$DtWorkloadGUID = New-DtWorkload -ServiceHost $DtSource -WorkloadTypeName $DtWorkloadType

This workload, by default, selects all volumes for protection
If desired, exclude any volumes from protection, however, be careful
when excluding data as it may compromise the integrity of your installed applications
Uncomment and use the following line, substituting G:\for the volume you want to exclude
Repeat the line to exclude multiple volumes
Set-DtLogicalItemSelection -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid -LogicalPath "G:\" -
Unselect

Chapter 5 Scripting examples 461

Get the workload definition including the workload and logical items
$DtWorkload = Get-DtWorkload -ServiceHost $DtSource -WorkloadId $DtWorkloadGUID

Get the default job options that will be used to create the job
$DtJobOptions = Get-DtRecommendedJobOptions -ServiceHost $DtTarget -Source $DtSource -JobType $DtJobType
-Workload $DtWorkload -OtherServers $OtherServers

Create the job
$DtJobGuidForVraMove = New-DtJob -ServiceHost $DtTarget -Source $DtSource -OtherServers $OtherServers -
JobType $DtJobType -JobOptions $DtJobOptions.JobOptions

Start the job
Start-DtJob -ServiceHost $DtTarget -JobId $DtJobGuidForVraMove

Close the connections for the server objects. You may want to consider using a finally block.
Disconnect-DtServer -ServiceHost $DtSource
Disconnect-DtServer -ServiceHost $DtTarget
Disconnect-DtServer -ServiceHost $VimTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 462

Creating a full server to Hyper-V migration job
The following sample script will create a simple full server to Hyper-V migration job. You will need tomodify this
script to fit your environment and configuration.

The following lines are wrapped to the line below so that you can see all of the text on the page.

l # Set-DtLogicalItemSelection
l $DtJobOptions =
l $DtJobGuidForVraMove =

When re-creating a script like this for your environment, make sure you enter those commands on just
one line.

Sample script to create a simple full server to Hyper-V migration job

Specify the variables to be used in the script

 # Source server and credentials
 $DtSourceName = "alpha"
 $DtSourceUserName = "domain\administrator"
 $DtSourcePassword = "password"

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

 # Type of workload you will be protecting and type of job you will be creating
 $DtWorkloadType = "VraMove"
 $DtJobType = "VraMove"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create source and target objects
$DtSource = New-DtServer -Name $DtSourceName -UserName $DtSourceUserName -Password $DtSourcePassword
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Create a workload
$DtWorkloadGUID = New-DtWorkload -ServiceHost $DtSource -WorkloadTypeName $DtWorkloadType

This workload, by default, selects all volumes for protection
If desired, exclude any volumes from protection, however, be careful
when excluding data as it may compromise the integrity of your installed applications
Uncomment and use the following line, substituting G:\for the volume you want to exclude
Repeat the line to exclude multiple volumes
Set-DtLogicalItemSelection -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid -LogicalPath "G:\" -
Unselect

Get the workload definition including the workload and logical items
$DtWorkload = Get-DtWorkload -ServiceHost $DtSource -WorkloadId $DtWorkloadGUID

Get the default job options that will be used to create the job
$DtJobOptions = Get-DtRecommendedJobOptions -ServiceHost $DtTarget -Source $DtSource -JobType $DtJobType
-Workload $DtWorkload

Create the job
$DtJobGuidForVraMove = New-DtJob -ServiceHost $DtTarget -Source $DtSource -JobType $DtJobType -JobOptions
$DtJobOptions.JobOptions

Start the job
Start-DtJob -ServiceHost $DtTarget -JobId $DtJobGuidForVraMove

Close the connections for the server objects. You may want to consider using a finally block.
Disconnect-DtServer -ServiceHost $DtSource

Chapter 5 Scripting examples 463

Disconnect-DtServer -ServiceHost $DtTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 464

Job information scripts
Below are links to sample job information scripts. The sample scripts must bemodified. They cannot be used as-
is. Modify them to fit your environment. If you need basic assistance with script modifications, contact Technical
Support. Assistance with advanced scripting will be referred to Professional Services.

l Viewing job Event messages on page 466
l Creating a job diagnostics file on page 468

Chapter 5 Scripting examples 465

Viewing job Event messages
Most Carbonite Event messages are located in the Application Log with a Source of Double-Take or Double-Take
Management Service. You will also find some Event messages in the System log under RepDrv. See the
ReferenceGuide for details on all of the Carbonite Event messages.

The following sample scripts will gather Carbonite specific Event messages. The cmdlets used in these scripts
are not Carbonite cmdlets. They areWindows PowerShell cmdlets. See yourWindows PowerShell
documentation for more details and examples on how to use these cmdlets.

You will need tomodify this script to fit your environment and configuration.

EachGet-EventLog cmdlet is just one line. It may be wrapped to the line below so that you can see all of
the text on the page. When re-creating a script like this for your environment, make sure you enter those
commands on just one line.

Sample script to view job Event messages

Set the date for how far back you want to view
$Date = get-date 01/15/2019

Display all Double-Take service and Double-Take Management Service Event messages
since the date you specified
Get-EventLog -LogName Application -Source @("Double-Take", "Double-Take Management Service") -After $Date

Sample script to view job Event messages

Display the last five Double-Take service or Double-Take Management Service Event
messages, listing all properties of the Events
Get-EventLog -LogName Application -Source @("Double-Take", "Double-Take Management Service") -Newest 5 |
format-list -property *

Sample script to view job Event messages

Set the values of the Event IDs you want to see
$FirstEventId = 4065 # Target data state change
$SecondEventId = 4111 # Sharing violation on target
$ThirdEventId = 8196 # Memory issues on source

Set the date for how far back you want to view
$Date = get-date 01/15/2019

Display specific Double-Take service or Double-Take Management Service Event messages
based on the Event IDs
Get-EventLog -LogName Application -Source @("Double-Take", "Double-Take Management Service") -After $Date
| Where-Object {$_.EventID -eq $FirstEventId -or $_.EventId -eq $SecondEventId}

Display specific RepDrv Event messages based on the Event IDs
Get-EventLog -LogName System -Source RepDrv -After $Date | Where-Object {$_.EventID -eq $ThirdEventId}

Chapter 5 Scripting examples 466

Sample script to view job Event messages

Display specific Double-Take service or Double-Take Management Service Event messages
based on the Event index number, and listing all properties of the Event
Get-EventLog -LogName Application -Source @("Double-Take", "Double-Take Management Service") | Where-
Object {$_.Index -eq 99461} | format-list -property *

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 467

Creating a job diagnostics file
The following sample script will create a job diagnostics file, also known as DTInfo. The file will be located in the
\Service\Data directory where you installed Carbonite. This is a file youmay want to give to technical support if
you are troubleshooting a job. There will be a separate file for each job on your target. You will need tomodify this
script to fit your environment and configuration.

Sample script to create a job diagnostics files

Specify the variables to be used in the script

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Login to your target server
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Get the jobs on the target and pass through to create a diagnostics file
Get-DtJob -ServiceHost $DtTarget | Save-DtJobDiagnostics -ServiceHost $DtTarget

Close the connections for the server object
Disconnect-DtServer -ServiceHost $DtTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 468

Job control scripts
Below are links to sample job control scripts. The sample scripts must bemodified. They cannot be used as-is.
Modify them to fit your environment. If you need basic assistance with script modifications, contact Technical
Support. Assistance with advanced scripting will be referred to Professional Services.

l Validating an existing job on page 470
l Editing a files and folders job forWindows on page 472
l Changing the compression setting for an existing job on page 474
l Stopping and starting a job on page 476
l Pausing and resuming a job on page 478
l Viewing and setting job and server options on page 480

Chapter 5 Scripting examples 469

Validating an existing job
The following sample script will validate an existing job. You will need tomodify this script to fit your environment
and configuration.

The $DtJob line is wrapped to the line below so that you can see all of the text on the page. When re-
creating a script like this for your environment, make sure you enter that command on just one line.

Sample script to validate an existing Carbonite job

Specify the variables to be used in the script

 # Source server
 $DtSourceName = "alpha"

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create target object
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Find the appropriate job, based on the source server name.
$DtJob = Get-DtJob -ServiceHost $DtTarget | Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DTSourceName}

Validate the job options.
$DtConfirmation = Confirm-DtJobOptions -ServiceHost $DtTarget -JobId $DtJob.Id -JobOptions $DtJob.Options

Give the validation process time to complete.
while ($true)
{
 sleep 1
 $DtConfirmStatus = Get-DtVerificationStatus -ServiceHost $DtTarget -Token $DtConfirmation
 if ($DtConfirmStatus.Task.Status -eq "Faulted")

{
 throw $("Validation failed: {0}" -f $DtConfirmStatus.Task.MessageId)
 }
 if ($DtConfirmStatus.Task.Status -eq "Completed")

{
 break
 }
}
$StatusCount=0
$DtConfirmStatus.Steps | ForEach-Object {
 if ($_.Status -eq "Warning" -or $_.Status -eq "Error")

{
 $StatusCount++
 # For each error or warning, display the level and message.
 Write-Host "$($_.Status) : $($_.MessageKey)"
 }
}

Identify if there were no errors or warnings.
if ($StatusCount -eq 0)
{
 Write-Host "No job validation errors or warnings were detected."
}

Close the connection for the server object
Disconnect-DtServer -ServiceHost $DtTarget

Chapter 5 Scripting examples 470

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 471

Editing a files and folders job for Windows
The following sample script will edit an existing files and folders job forWindows. You will need tomodify this
script to fit your environment and configuration.

The following lines are wrapped to the line below so that you can see all of the text on the page.

l $DtJob =
l $DtNewRule =
l $DtExcludeTxtRule =

When re-creating a script like this for your environment, make sure you enter those commands on just
one line.

Sample script to edit an existing files and folders Carbonite job

Specify the variables to be used in the script

 # Source server and credentials
 $DtSourceName = "alpha"
 $DtSourceUserName = "domain\administrator"
 $DtSourcePassword = "password"

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

 # Changes to the job
 $DtJobDirectory = "C:\NewDirectory"
 $DtJobFileToExclude = "C:\NewDirectory*.txt"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create source and target objects
$DtSource = New-DtServer -Name $DtSourceName -UserName $DtSourceUserName -Password $DtSourcePassword
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Identify the job, based on the source server name
$DtJob = Get-DtJob -ServiceHost $DtTarget | Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtSourceName}

Create a workload object on the source to edit the current workload rules
$DtWorkloadGUID = New-DtWorkload -ServiceHost $DtSource -Workload $DtJob.Options.Workload

Specify the additional files and folders to protect
$DtNewRule = Add-DtPhysicalRule -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid -Path $DtJobDirectory

Specify files to exclude from protection, in this example .txt files in the new protection rule
$DtExcludeTxtRule = Add-DtPhysicalRule -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid -Path
$DtJobFileToExclude -Exclude

Update the workload rules in the job options with the new modifications
$DtWorkload = Get-DtWorkload -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid
$DtJob.Options.Workload=$DtWorkload

Update the path mapping of the replicated data on the target based on the current recommendations
$DtTargetPath = Get-DtRecommendedPathTransform -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid
$DtJob.Options.CoreConnectionOptions.PathTransformations = $DtTargetPath

If you do not want to use the one-to-one path mapping in the default recommended options,
you can configure the job to use specific locations, similar to the following lines.
$DtJob.Options.CoreConnectionOptions.PathTransformations[0].SourcePath = "C:\"
$DtJob.Options.CoreConnectionOptions.PathTransformations[0].TargetPath = "C:\ReplicatedData\"

Chapter 5 Scripting examples 472

Verify the new job options on the existing job.
$DtConfirmation = Confirm-DtJobOptions -ServiceHost $DtTarget -JobId $DtJob.Id -JobOptions $DtJob.Options
do
{
 # Poll every second for the confirmation status
 Start-Sleep -Seconds 1
 $DtConfirmStatus = Get-DtVerificationStatus -ServiceHost $DtTarget -Token $DtConfirmation
 # When the ActivityCompletionStatus is not InProgress, the confirmation is complete.
}
while ($DtConfirmStatus.Steps.Status -eq 0)

If the ActivityCompletionStatus is Error, print out the steps reporting an Error.
if ($DtConfirmStatus.Steps.Status -eq 3)
{
 Write-Error "The following job validation errors were detected:"
 $DtConfirmStatus.Steps | ForEach-Object

{
 if ($_.Status -eq 3)

{
 Write-Error "$($_.Id) : $($_.TitleKey) : $($_.MessageKey)"
 }
 }
 # Terminate so the job is not edited with invalid options
 throw "Job validation failure."
}

Apply new job options with the updated workload rules, forcing a remirror.
Edit-DtJob -ServiceHost $DtTarget -JobId $DtJob.Id -JobOptions $DtJob.Options

Close the connections for the server objects. You may want to consider using a finally block.
Disconnect-DtServer -ServiceHost $DtSource
Disconnect-DtServer -ServiceHost $DtTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 473

Changing the compression setting for an existing job
The following sample script will change the compression setting for an existing job. You will need tomodify this
script to fit your environment and configuration.

The $DtJob line is wrapped to the line below so that you can see all of the text on the page. When re-
creating a script like this for your environment, make sure you enter that command on just one line.

Sample script to change the compression settings for an existing Carbonite job

Specify the variables to be used in the script

 # Source server and credentials
 $DtSourceName = "alpha"
 $DtSourceUserName = "domain\administrator"
 $DtSourcePassword = "password"

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create source and target objects
$DtSource = New-DtServer -Name $DtSourceName -UserName $DtSourceUserName -Password $DtSourcePassword
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Identify the job, based on the source server name
$DtJob = Get-DtJob -ServiceHost $DtTarget | Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtSourceName}

Create a workload object on the source to edit the current workload rules
$DtWorkloadGUID = New-DtWorkload -ServiceHost $DtSource -Workload $DtJob.Options.Workload

Enable compression using one of the following combinations
level = -1 Compression is disabled
level = 0 and algorithm = 10 Compression is enabled at low level
level = 1 and algorithm = 21 Compression is enabled at medium level
level = 2 and algorithm = 31 Compression is enabled at high level
$DtJob.Options.CoreConnectionOptions.ConnectionStartParameters.CompressionLevel.Level=1
$DtJob.Options.CoreConnectionOptions.ConnectionStartParameters.CompressionLevel.Algorithm=21

Update the workload rules in the job options with the new modifications
$DtWorkload = Get-DtWorkload -ServiceHost $DtSource -WorkloadId $DtWorkloadGuid
$DtJob.Options.Workload=$DtWorkload

Verify the new job options on the existing job.
$DtConfirmation = Confirm-DtJobOptions -ServiceHost $DtTarget -JobId $DtJob.Id -JobOptions $DtJob.Options
do
{
 # Poll every second for the confirmation status
 Start-Sleep -Seconds 1
 $DtConfirmStatus = Get-DtVerificationStatus -ServiceHost $DtTarget -Token $DtConfirmation
 # When the activity completion status is not InProgress, the confirmation is complete.
} while ($DtConfirmStatus.Steps.Status -eq 0)

If the completion status is Error, print out the steps reporting an Error
if ($DtConfirmStatus.Steps.Status -eq 3)
{
 Write-Error "The following job validation errors were detected:"
 $DtConfirmStatus.Steps | ForEach-Object

{
 if ($_.Status -eq 3)

{
 Write-Error "$($_.Id) : $($_.TitleKey) : $($_.MessageKey)"
 }

Chapter 5 Scripting examples 474

 }
 # Terminate so the job is not edited with invalid options
 throw "Job validation failure."
}

Apply new job options with the updated workload rules, forcing a remirror.
Edit-DtJob -ServiceHost $DtTarget -JobId $DtJob.Id -JobOptions $DtJob.Options

Close the connections for the server objects. You may want to consider using a finally block.
Disconnect-DtServer -ServiceHost $DtSource
Disconnect-DtServer -ServiceHost $DtTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 475

Stopping and starting a job
The following sample scripts stop and start a Carbonite job on your target. You will need tomodify these scripts to
fit your environment and configuration.

Sample script to stop a Carbonite job on your target

Specify the variables to be used in the script

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create target object
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Get the job ID of the job running on the target
$DtJob = Get-DtJob -ServiceHost $DtTarget

Stop the job running on the target
Stop-DtJob -ServiceHost $DtTarget -JobId $DtJob.Id

Close the connections for the server object
Disconnect-DtServer -ServiceHost $DtTarget

Sample script to start a Carbonite job on your target

Specify the variables to be used in the script

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create target object
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Get the job ID of the job running on the target
$DtJob = Get-DtJob -ServiceHost $DtTarget

Resume the job running on the target
Start-DtJob -ServiceHost $DtTarget -JobId $DtJob.Id

Close the connections for the server object
Disconnect-DtServer -ServiceHost $DtTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

If you havemultiple jobs on your target, you can use theWindows Where-Object cmdlet to identify a specific job
by its source URI, source server name, or by job name. For example, youmight use one of the following.

Chapter 5 Scripting examples 476

$DtJob = Get-DtJob -ServiceHost $DtTarget | Where-Object { $_.SourceHostUri.Host -eq “ServerName”
}

$DtJob = Get-DtJob -ServiceHost $DtTarget | Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

$DtJob = Get-DtJob -ServiceHost $DtTarget | Where-Object { $_.Options.Name -eq “source to target” }

See yourWindows PowerShell documentation for more details on using theWhere-Object command.

Chapter 5 Scripting examples 477

Pausing and resuming a job
The following sample scripts pause and resume aCarbonite job on your target. You will need tomodify these
scripts to fit your environment and configuration.

Sample script to pause a Carbonite job on your target

Specify the variables to be used in the script

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create target object
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Get the job ID of the job running on the target
$DtJob = Get-DtJob -ServiceHost $DtTarget

Pause the job running on the target
Suspend-DtJob -ServiceHost $DtTarget -JobId $DtJob.Id

Close the connections for the server object
Disconnect-DtServer -ServiceHost $DtTarget

Sample script to resume a Carbonite job on your target

Specify the variables to be used in the script

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create target object
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Get the job ID of the job running on the target
$DtJob = Get-DtJob -ServiceHost $DtTarget

Resume the job running on the target
Resume-DtJob -ServiceHost $DtTarget -JobId $DtJob.Id

Close the connections for the server object
Disconnect-DtServer -ServiceHost $DtTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

If you havemultiple jobs on your target, you can use theWindows Where-Object cmdlet to identify a specific job
by its source URI, source server name, or job name. For example, youmight use one of the following.

Chapter 5 Scripting examples 478

$DtJob = Get-DtJob -ServiceHost $DtTarget | Where-Object { $_.SourceHostUri.Host -eq “ServerName”
}

$DtJob = Get-DtJob -ServiceHost $DtTarget | Where-Object {
$_.Statistics.CoreConnectionDetails.SourceMachineName -eq $DtServerObjectAlpha}

$DtJob = Get-DtJob -ServiceHost $DtTarget | Where-Object { $_.Options.Name -eq “source to target” }

See yourWindows PowerShell documentation for more details on using theWhere-Object command.

Chapter 5 Scripting examples 479

Viewing and setting job and server options
The following sample script will gather and set several Carbonite job and server options. Youmay want to
consider running cmdlets like this from the PowerShell command line, rather than a script, so you can see the
values returned from the get cmdlets and thenmake appropriate adjustments for your set cmdlets. You will need
tomodify this script to fit your environment and configuration. The options used in this script are examples. You
can get and set any option. See Server and job settings on page 501 for a complete list of options.

Sample script to gather and set Carbonite job and server options
You may want to run these cmdlets from the PowerShell command prompt
so that you can see the values returned for each of the get cmdlets
and then determine appropriate desired values for each option

Specify the variables to be used in the script

 # Source server and credentials
 $DtSourceName = "alpha"
 $DtSourceUserName = "domain\administrator"
 $DtSourcePassword = "password"

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create source and target objects
$DtSource = New-DtServer -Name $DtSourceName -UserName $DtSourceUserName -Password $DtSourcePassword
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Gather and display several job and server settings
These options are examples. You can get and set any option.
$DtMaxChecksumBlocksSource = Get-DtOption -ServiceHost $DtSource -Name MaxChecksumBlocks
$DtMaxChecksumBlocksTarget = Get-DtOption -ServiceHost $DtTarget -Name MaxChecksumBlocks
$DtMirrorChunkSizeSource = Get-DtOption -ServiceHost $DtSource -Name MirrorChunkSize
$DtMirrorChunkSizeTarget = Get-DtOption -ServiceHost $DtTarget -Name MirrorChunkSize
$DtCalculateByVolumeSource = Get-DtOption -ServiceHost $DtSource -Name CalculateByVolume
$DtCalculateByVolumeTarget = Get-DtOption -ServiceHost $DtTarget -Name CalculateByVolume
$DtAutoRemirrorSource = Get-DtOption -ServiceHost $DtSource -Name AutoRemirror
$DtAutoRemirrorTarget = Get-DtOption -ServiceHost $DtTarget -Name AutoRemirror
write-output "=================="
write-output "These are the current options and values."
write-output "The source is displayed first, and the target is displayed second."
$DtMaxChecksumBlocksSource
$DtMaxChecksumBlocksTarget
$DtMirrorChunkSizeSource
$DtMirrorChunkSizeTarget
$DtCalculateByVolumeSource
$DtCalculateByVolumeTarget
$DtAutoRemirrorSource
$DtAutoRemirrorTarget

Store the desired value for each job and server setting
$DtMaxChecksumBlocksDesiredValue = @{MaxChecksumBlocks=64}
$DtMirrorChunkSizeDesiredValue = @{MirrorChunkSize=131072}
$DtCalculateByVolumeDesiredValue = @{CalculateByVolume=1}
$DtAutoRemirrorDesiredValue = @{AutoRemirror=1}

Set the new values
Set-DtOption -ServiceHost $DtSource -Setting $DtMaxChecksumBlocksDesiredValue
Set-DtOption -ServiceHost $DtTarget -Setting $DtMaxChecksumBlocksDesiredValue
Set-DtOption -ServiceHost $DtSource -Setting $DtMirrorChunkSizeDesiredValue
Set-DtOption -ServiceHost $DtTarget -Setting $DtMirrorChunkSizeDesiredValue
Set-DtOption -ServiceHost $DtSource -Setting $DtCalculateByVolumeDesiredValue
Set-DtOption -ServiceHost $DtTarget -Setting $DtCalculateByVolumeDesiredValue
Set-DtOption -ServiceHost $DtSource -Setting $DtAutoRemirrorDesiredValue
Set-DtOption -ServiceHost $DtTarget -Setting $DtAutoRemirrorDesiredValue

Regather and display the updated values

Chapter 5 Scripting examples 480

$DtMaxChecksumBlocksSource = Get-DtOption -ServiceHost $DtSource -Name MaxChecksumBlocks
$DtMaxChecksumBlocksTarget = Get-DtOption -ServiceHost $DtTarget -Name MaxChecksumBlocks
$DtMirrorChunkSizeSource = Get-DtOption -ServiceHost $DtSource -Name MirrorChunkSize
$DtMirrorChunkSizeTarget = Get-DtOption -ServiceHost $DtTarget -Name MirrorChunkSize
$DtCalculateByVolumeSource = Get-DtOption -ServiceHost $DtSource -Name CalculateByVolume
$DtCalculateByVolumeTarget = Get-DtOption -ServiceHost $DtTarget -Name CalculateByVolume
$DtAutoRemirrorSource = Get-DtOption -ServiceHost $DtSource -Name AutoRemirror
$DtAutoRemirrorTarget = Get-DtOption -ServiceHost $DtTarget -Name AutoRemirror
write-output " "
write-output "=================="
write-output "These are the updated options and values."
write-output "The source is displayed first, and the target is displayed second."
$DtMaxChecksumBlocksSource
$DtMaxChecksumBlocksTarget
$DtMirrorChunkSizeSource
$DtMirrorChunkSizeTarget
$DtCalculateByVolumeSource
$DtCalculateByVolumeTarget
$DtAutoRemirrorSource
$DtAutoRemirrorTarget

Close the connections for the server objects. You may want to consider using a finally block.
Disconnect-DtServer -ServiceHost $DtSource
Disconnect-DtServer -ServiceHost $DtTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 481

Other sample scripts
Below are links to other sample scripts. The sample scripts must bemodified. They cannot be used as-is. Modify
them to fit your environment. If you need basic assistance with script modifications, contact Technical Support.
Assistance with advanced scripting will be referred to Professional Services.

l Pausing and resuming your target on page 483
l Shutting down the Double-Take service on a server on page 484
l Hiding your password in a PowerShell script on page 485

Chapter 5 Scripting examples 482

Pausing and resuming your target
The following sample scripts pause and resume your Carbonite target. (The server itself is not paused. Only
Carbonite processing is paused.) You will need tomodify these scripts to fit your environment and configuration.

Sample script to pause the Carbonite target

Specify the variables to be used in the script

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create target object
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Pause all of the Carbonite jobs on the target
Suspend-DtTarget -ServiceHost $DtTarget -All

Close the connections for the server object
Disconnect-DtServer -ServiceHost $DtTarget

Sample script to resume the Carbonite target

Specify the variables to be used in the script

 # Target server and credentials
 $DtTargetName = "beta"
 $DtTargetUserName = "domain\administrator"
 $DtTargetPassword = "password"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create target object
$DtTarget = New-DtServer -Name $DtTargetName -UserName $DtTargetUserName -Password $DtTargetPassword

Resume all of the Carbonite jobs on the target
Resume-DtTarget -ServiceHost $DtTarget -All

Close the connections for the server object
Disconnect-DtServer -ServiceHost $DtTarget

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 483

Shutting down the Double-Take service on a server
The following sample script will login to a Carbonite server and then shutdown the Double-Take service on that
server. You will need tomodify this script to fit your environment and configuration.

Sample script to shutdown the Double-Take service on a server

Specify the variables to be used in the script

 # Source server and credentials
 $DtSourceName = "alpha"
 $DtSourceUserName = "domain\administrator"
 $DtSourcePassword = "password"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Create source object
$DtSource = New-DtServer -Name $DtSourceName -UserName $DtSourceUserName -Password $DtSourcePassword

Shutdown the Double-Take service on the server
Stop-DtReplicationService -ServiceHost $DtSource

Close the connections for the server object
Disconnect-DtServer -ServiceHost $DtSource

If you want to hide your user credentials in your script, use theWindows PowerShell Get-Credential cmdlet. The
password will not be visible becauseWindows stores an encrypted password. See Hiding your password in a
PowerShell script on page 485 for basic details on using this cmdlet. See yourWindows PowerShell
documentation for detailed instructions.

Chapter 5 Scripting examples 484

Hiding your password in a PowerShell script
The Carbonite PowerShell cmdlets require a server object, and that server object requires user credentials for the
specified server. Many corporate security policies do not allow for user passwords to be typed in plain text, which
canmake scripting difficult. You can use the credential object returned from theWindows PowerShell Get-
Credential cmdlet. This password will not be visible becauseWindows stores an encrypted password. The
following sample script logs in to a Carbonite server using a hidden password. See yourWindows PowerShell
documentation for more details on creating a credential object with Get-Credential. You will need tomodify this
script to fit your environment and configuration.

Sample script to login to a Carbonite server using a hidden password

Specify the variables to be used in the script

 # Source server
 $DtSourceName = "alpha"

 # Target server
 $DtTargetName = "beta"

Import the Carbonite PowerShell module
This may be \Service\ or \Console\ depending on your installation
Import-Module "C:\Program Files\Carbonite\Replication\Console\DoubleTake.PowerShell.dll"

Store user credentials in an encrypted form
$DtCredentialEncrypted = Get-Credential domain\administrator

At this point, you will be prompted to supply the password
and the credentials will be stored in an encrypted format

Create source and target objects
$DtSource = New-DtServer -Name $DtSourceName -Credential $DtCredentialEncrypted
$DtTarget = New-DtServer -Name $DtTargetName -Credential $DtCredentialEncrypted

If you are incorporating this script into another script,
be sure and close the connections for the server objects
at the end of the script using the Disconnect-DtServer
cmdlet. For example,
Disconnect-DtServer -ServiceHost $DtSource
Disconnect-DtServer -ServiceHost $DtTarget
You may want to consider using a finally block.

Chapter 5 Scripting examples 485

Chapter 6 Carbonite Replication Console Set Options page to
JobOptions class mapping
When using the Carbonite Replication Console to create a job, theSet Options page filters the job options in order to display only those that are specific
to the type of job you are creating. This filtering also applies to server configurations within a job type. For example, a files and folders job from a
standalone source to a standalone target will have different job options displayed in the console than a file and folders job from a clustered source to a
clustered target.

There is no such filtering available in the JobOptions class because the class must include all possible configurations for all possible job types. This
makes the JobOptions class large and potentially confusing.

The sections below correspond to the accordion sections available on theSet Options page in the console. These sections will help you identify a
JobOptions class for a particular job option. First, expand the section below that corresponds to the console accordion that has the option you want to set.
Then, locate the field name from the console accordion in the left column of the table and the corresponding JobOptions class to use in the right column of
the table. Keep inmind these caveats about console options compared to JobOptions classes.

l Some console options are for display purposes only and do not have a corresponding JobOptions class.
l Some console options may havemore than one JobOptions class that may need to be set.
l Some console options may have unique JobOptions classes depending on the job type.
l The sections below and the information within them are a superset of all available accordions and all available options within an accordion. You
may not be able to configure a JobOptions class for your job type. For example, not all job types offer bandwidth limiting, and not all jobs that do
offer bandwidth limiting offer bandwidth scheduling. Use theSet Options page in the console as a guide to help you determine which job options
are applicable to your job type.

Bandwidth

Set Options Field Equivalent JobOptions Class

Do not limit bandwidth JobOptions.BandwidthOptions.Mode

Use a fixed limit JobOptions.BandwidthOptions.Mode

Use a fixed limit, Preset bandwidth JobOptions.BandwidthOptions.Specification.Key

JobOptions.BandwidthOptions.Specification.Type

Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping 486

Set Options Field Equivalent JobOptions Class

JobOptions.BandwidthOptions.Specification.Value

Use a fixed limit, Bandwidth JobOptions.BandwidthOptions.Limit

Use scheduled limits JobOptions.BandwidthOptions.Mode

Use scheduled limits, New (or Edit), Daytime entry JobOptions.BandwidthOptions.Entries.EntryType

Use scheduled limits, New (or Edit), Overnight entry JobOptions.BandwidthOptions.Entries.EntryType

Use scheduled limits, New (or Edit), Day JobOptions.BandwidthOptions.Entries .DaysOfWeek

Use scheduled limits, New (or Edit), Start time JobOptions.BandwidthOptions.Entries.StartTime

Use scheduled limits, New (or Edit), End time JobOptions.BandwidthOptions.Entries.EndTime

Use scheduled limits, New (or Edit), Preset bandwidth JobOptions.BandwidthOptions.Specification.Key

JobOptions.BandwidthOptions.Specification.Type

JobOptions.BandwidthOptions.Specification.Value

Use scheduled limits, New (or Edit), Bandwidth JobOptions.BandwidthOptions.Entries.Limit

Compression

Set Options Field Equivalent JobOptions Class

Enable compression JobOptions.CoreConnectionOptions.ConnectionStartParameters.
CompressionLevel.Algorithm

JobOptions.CoreConnectionOptions.ConnectionStartParameters.
CompressionLevel.Level

Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping 487

Failover Identity

Set Options Field Equivalent JobOptions Class

Apply source network configuration to the target JobOptions.CoreMonitorOptions.ShouldPerformLanFailover (for files and folders
jobs)

JobOptions.SystemStateOptions.IsWanFailover (for full server jobs)

Failover server name JobOptions.CoreMonitorOptions.MonitorConfiguration.ItemsToFailover

Add these addresses to the selected target adapter after
failover

JobOptions.CoreMonitorOptions.MonitorConfiguration.ItemsToFailover

Retain target network configuration JobOptions.CoreMonitorOptions.ShouldPerformLanFailover (for files and folders
and application jobs)

JobOptions.SystemStateOptions.IsWanFailover (for full server jobs)

JobOptions.VRAOptions.IsWanFailoverEnabled (for virtual guest jobs)

Failover server name JobOptions.CoreMonitorOptions.MonitorConfiguration.ItemsToFailover

Update DNS server JobOptions.DnsOptions.Enabled

Credentials for JobOptions.CoreMonitorOptions.MonitorConfiguration.
ActiveDirectoryCredentials

These DNS servers will be updated during failover JobOptions.DnsOptions.Domains.DnsServers

Update these source DNS entries with the
corresponding target IP address

JobOptions.DnsOptions.Domains.IpAddresMappings

Update TTL JobOptions.DnsOptions.Domains.ShouldUpdateTtl

JobOptions.DnsOptions.Domains.IpAddressMappings.ShouldUpdateTtl

JobOptions.DnsOptions.Domains.TtlValue

JobOptions.DnsOptions.Domains.IpAddressMappings.TtlValue

Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping 488

Set Options Field Equivalent JobOptions Class

Set both pairs of values to the same value. Both locations of ShouldUpdateTtl and
both locations of TtlValue should be the same value. If they are different, the
DNS update will fail.

Failover Monitor

Set Options Field Equivalent JobOptions Class

Total time to failure JobOptions.CoreMonitorOptions.TotalTimeAllowed

JobOptions.CoreMonitorOptions.UseTotalTimeAllowed

Consecutive failures JobOptions.CoreMonitorOptions.UseTotalTimeAllowed

JobOptions.CoreMonitorOptions.MonitorConfiguration.Addresses.
MaxPingAttempts

Monitor on this interval JobOptions.CoreMonitorOptions.MonitorConfiguration.Addresses.PingInterval

Network monitoring JobOptions.CoreMonitorOptions.MonitorConfiguration.Addresses.PingMethods

Monitor these addresses JobOptions.CoreMonitorOptions.MonitorConfiguration.Addresses.Address

Monitoringmethod JobOptions.CoreMonitorOptions.MonitorConfiguration.Addresses.PingMethods

Failover trigger JobOptions.CoreMonitorOptions.MonitorConfiguration.Trigger

Servicemonitoring JobOptions.MonitoringOptions.ServiceMonitoringEnabled

Services tomonitor JobOptions.ApplicationOptions.MonitoredServices

Attempt to restart this service after each failure JobOptions.MonitoringOptions.ServiceMonitoringOptions.StartService

Custom script monitoring JobOptions.CoreMonitorOptions.MonitorConfiguration.Addresses.PingMethods

Script file JobOptions.CoreMonitorOptions.MonitorConfiguration.ScriptMonitorName

Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping 489

Failover Options

Set Options Field Equivalent JobOptions Class

Wait for user to initiate failover JobOptions.CoreMonitorOptions.MonitorConfiguration.ProcessingOptions.
UserInterventionRequired

Shutdown source server JobOptions.FullServerFailoverOptions.ShutdownSourceServer (for full server
jobs)

JobOptions.VRAOptions.WorkloadCustomizationOptions.
ShouldShutdownSource (for virtual guest jobs)

Change target ports to match source during failover JobOptions.SystemStateOptions.ApplyPorts

Failover shares JobOptions.CoreMonitorOptions.MonitorConfiguration.ItemsToFailover.Shares

Failover host name JobOptions.CoreMonitorOptions.MonitorConfiguration.ActiveDirectoryOptions

Failback host name JobOptions.CoreMonitorOptions.MonitorConfiguration.ActiveDirectoryOptions

Active Directory Credentials JobOptions.CoreMonitorOptions.MonitorConfiguration.
ActiveDirectoryCredentials

Scripts JobOptions.CoreMonitorOptions.MonitorConfiguration.Scripts

Failover Services

Set Options Field Equivalent JobOptions Class

Services to stop on source and start on target during
failover and start on source and stop on target during
failback

JobOptions.SystemStateOptions.ServicesToStopOptions

Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping 490

General

Set Options Field Equivalent JobOptions Class

Job name JobOptions.Name

Reverse virtual machine display name JobOptions.VRAOptions.ReverseOptions.VmName

Select the virtual recovery appliance on the source ESX
server that will be used when reversing the job

JobOptions.VRAOptions.SourceApplianceInfo.Address

JobOptions.VRAOptions.SourceApplianceInfo.GuestUri

Send data to the reverse appliance using this route JobOptions.VRAOptions.ReverseRoute

Select the datastore on the reverse ESX server that will
hold the reverse virtual machine

obOptions.VRAOptions.ReverseOptions.VmPath

Mirror, Verify & Orphaned Files

Set Options Field Equivalent JobOptions Class

Choose a comparisonmethod and whether to mirror the
entire file or only the bytes that differ in each file

JobOptions.CoreConnectionOptions.ConnectionStartParameters.
MirrorParameters.MirrorComparisonCriteria.

JobOptions.CoreConnectionOptions.ConnectionStartParameters.
MirrorParameters.MirrorOperationOptions

Enable scheduled verification JobOptions.CoreConnectionOptions.ConnectionStartParameters.Schedule.
Verify.IsEnabled

Verify on this interval JobOptions.CoreConnectionOptions.ConnectionStartParameters.Schedule.
Verify.Interval

Begin immediately JobOptions.CoreConnectionOptions.ConnectionStartParameters.Schedule.
Verify.StartTime

Begin at this time JobOptions.CoreConnectionOptions.ConnectionStartParameters.Schedule.

Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping 491

Set Options Field Equivalent JobOptions Class

Verify.StartTime

Report only JobOptions.CoreConnectionOptions.ConnectionStartParameters.Schedule.
Verify.Criteria

Report andmirror files JobOptions.CoreConnectionOptions.ConnectionStartParameters.Schedule.
Verify.Criteria

JobOptions.CoreConnectionOptions.ConnectionStartParameters.Schedule.
Verify.Options

Calculate size of protected data upon connection JobOptions.CoreConnectionOptions.ConnectionStartParameters.
MirrorParameters.MirrorOperationOptions

Delete orphaned files JobOptions.CoreConnectionOptions.ConnectionStartParameters.
MirrorParameters.MirrorOperationOptions

Network Adapter Options

Set Options Field Equivalent JobOptions Class

Map source network adapter to target network adapters JobOptions.SystemStateOptions.NicMappings

Network Route

Set Options Field Equivalent JobOptions Class

Send data to the target server using this route JobOptions.CoreConnectionOptions.TargetAddress

Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping 492

Path Mapping

Set Options Field Equivalent JobOptions Class

Mappings JobOptions.CoreConnectionOptions.PathTransformations

Bock target paths upon connection JobOptions.CoreConnectionOptions.ConnectionStartParameters.
IsPathBlockingEnabled

Replica Virtual Machine Configuration

Set Options Field Equivalent JobOptions Class

Display name JobOptions.VRAOptions.ReplicaApplianceInfo.DisplayName

Sockets JobOptions.VRAOptions.ReplicaVmInfo.CPUs

Cores per socket JobOptions.VRAOptions.ReplicaVmInfo.CorsPerProcessor

Processors JobOptions.VRAOptions.ReplicaVmInfo.CPUs

Memory JobOptions.VRAOptions.ReplicaVmInfo.Memory

Network adapter type JobOptions.VRAOptions.Volumes.DiskProvisioningType

Replica virtual switch JobOptions.VRAOptions.VirtualSwitchMapping.TargetVirtualSwitch

Set VLAN onReplica JobOptions.VRAOptions.ReplicaNetworkInterfaceInfo.VLAN_ID

Replica VLAN JobOptions.VRAOptions.ReplicaNetworkInterfaceInfo.VLAN_ID

Power on replica after failover JobOptions.VRAOptions.WorkloadCustomizationOptions.
PowerupReplicaAfterFailover

Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping 493

Replica Virtual Machine Location

Set Options Field Equivalent JobOptions Class

Select the datastore on the target ESX server that will
hold the replica virtual machine

JobOptions.VRAOptions.Volumes.VirtualDiskPath

Select the volume and folder on the target server that
will hold the replica virtual machine

JobOptions.VRAOptions.Volumes.VirtualDiskPath

Full path where the replica virtual machine will be stored JobOptions.VRAOptions.Volumes.VirtualDiskPath

Local File Volume None. This is an interface control only so the console can display the appropriate
fields depending on the selected option.

SMB Share None. This is an interface control only so the console can display the appropriate
fields depending on the selected option.

File server name JobOptions.VRAOptions.Volumes.VirtualDiskPath

Share name JobOptions.VRAOptions.Volumes.VirtualDiskPath

Folder JobOptions.VRAOptions.Volumes.VirtualDiskPath

Replica Virtual Machine Network Settings

Set Options Field Equivalent JobOptions Class

Use advanced settings for replica virtual machine
network configuration

JobOptions.VRAOptions.IsWanFailoverEnabled

Replica IP addresses JobOptions.VRAOptions.ReplicaNetworkInterfaceInfo.IPAddresses

Replica Default Gateways JobOptions.VRAOptions.ReplicaNetworkInterfaceInfo.Gateways

Replica DNS Server addresses JobOptions.VRAOptions.ReplicaNetworkInterfaceInfo.DnsServers

Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping 494

Replica Virtual Machine Volumes

Set Options Field Equivalent JobOptions Class

Replica Disk Size JobOptions.VRAOptions.Volumes.DesiredSize

JobOptions.VRAOptions.ReverseOptions.Volumes.DesiredSize

Replica Disk Format JobOptions.VRAOptions.Volumes.DiskProvisioningType

JobOptions.VRAOptions.ReverseOptions.Volumes.DiskProvisioningType

Storage Controller JobOptions.VRAOptions.Volumes.DiskControllerType

Target Volume
Target Datastore

JobOptions.VRAOptions.Volumes.VirtualDiskPath

JobOptions.VRAOptions.ReverseOptions.Volumes.VirtualDiskPath

Virtual Disk None. This is an interface control only so the console can display the appropriate
fields depending on the selected option.

Pre-existing Disk Path JobOptions.VRAOptions.Volumes.PreexistingDiskPath

Create disks match source None. This is an interface control only so the console can display the appropriate
fields depending on the selected option.

Create disks per volume None. This is an interface control only so the console can display the appropriate
fields depending on the selected option.

Disk Properties, Virtual disk None. This is an interface control only so the console can display the appropriate
fields depending on the selected option.

Disk Properties, Datastore JobOptions.VRAOptions.DiskOptions.VirtualDiskPath

Disk Properties, Pre-existing disk path JobOptions.VRAOptions.DiskOptions.PreexistingDiskPath

Disk Properties, Replica disk format JobOptions.VRAOptions.DiskOptions.DiskProvisioningType

Disk Properties, Desired disk size JobOptions.VRAOptions.DiskOptions.DesiredSizeInB

VolumeGroup Properties, Virtual disk None. This is an interface control only so the console can display the appropriate

Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping 495

Set Options Field Equivalent JobOptions Class

fields depending on the selected option.

VolumeGroup Properties, Datastore JobOptions.VRAOptions.LvmOptions.VolumeGroup.LogicalVolume.
VirtualDiskPath

JobOptions.VRAOptions.LvmOptions.VolumeGroup.PhysicalVolume.
VirtualDiskPath

VolumeGroup Properties, Pre-existing disk path JobOptions.VRAOptions.LvmOptions.VolumeGroup.PreexistingDisksPath

VolumeGroup Properties, Replica disk format JobOptions.VRAOptions.LvmOptions.VolumeGroup.PhysicalVolume.
DiskProvisioningType

VolumeGroup Properties, Physical volumemaximum
size

JobOptions.VRAOptions.LvmOptions.VolumeGroup.MaxPhysicalVolumeSize

VolumeGroup Properties, VolumeGroup Size JobOptions.VRAOptions.LvmOptions.VolumeGroup.SourceVolumeGroupSize

Logical Volume Properties, Replica volume size JobOptions.VRAOptions.LvmOptions.VolumeGroup.LogicalVolume.DesiredSize

Partition Properties, Virtual disk None. This is an interface control only so the console can display the appropriate
fields depending on the selected option.

Partition Properties, Datastore JobOptions.VRAOptions.Volumes.VirtualDiskPath

Partition Properties, Pre-existing disk path JobOptions.VRAOptions.Volumes.PreexistingDiskPath

Partition Properties, Replica disk format JobOptions.VRAOptions.Volumes.DiskProvisioningType

Partition Properties, Replica volume size JobOptions.VRAOptions.Volumes.DesiredSize

Reverse Protection and Routing

Set Options Field Equivalent JobOptions Class

Send data to the target server using this route JobOptions.CoreConnectionOptions.TargetAddress

Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping 496

Set Options Field Equivalent JobOptions Class

Enable reverse protection JobOptions.FullServerFailoverOptions.CreateBackupConnection

Select a reserved IP address on the source JobOptions.SystemStateOptions.SourceReservedAddress

Select a reserved IP address on the target JobOptions.SystemStateOptions.TargetReservedAddress

Scripts

Set Options Field Equivalent JobOptions Class

Script file JobOptions.CoreConnectionOptions.ConnectionStartParameters.ScriptPoints.
Path

JobOptions.CoreConnectionOptions.ConnectionStartParameters.ScriptPoints.
Type

Arguments JobOptions.CoreConnectionOptions.ConnectionStartParameters.ScriptPoints.
Arguments

Allow script to interact with desktop JobOptions.CoreConnectionOptions.ConnectionStartParameters.ScriptPoints.
InteractionMode

Delay until script completes JobOptions.CoreConnectionOptions.ConnectionStartParameters.ScriptPoints.
ExecutionMode

Snapshots

Set Options Field Equivalent JobOptions Class

Enable scheduled snapshots JobOptions.CoreConnectionOptions.ConnectionStartParameters.
SnapshotSchedule.IsEnabled

Take snapshots on this interval JobOptions.CoreConnectionOptions.ConnectionStartParameters.
SnapshotSchedule.Interval

Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping 497

Set Options Field Equivalent JobOptions Class

Maximum number of snapshots JobOptions.CoreConnectionOptions.ConnectionStartParameters.
SnapshotSchedule.MaxNumberOfSnapshots

Begin immediately JobOptions.CoreConnectionOptions.ConnectionStartParameters.
SnapshotSchedule.StartTime

Begin at this time JobOptions.CoreConnectionOptions.ConnectionStartParameters.
SnapshotSchedule.StartTime

Staging Folder Options

Set Options Field Equivalent JobOptions Class

Select additional folders from the source that need to be
staged

JobOptions.FullServerFailoverOptions.AdditionalStagingFolders

Target Paths

Set Options Field Equivalent JobOptions Class

Block target paths upon connection JobOptions.CoreConnectionOptions.ConnectionStartParameters.
IsPathBlockingEnabled

Target Route

Set Options Field Equivalent JobOptions Class

Target route JobOptions.CoreConnectionOptions.TargetAddress

Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping 498

Target Services

Set Options Field Equivalent JobOptions Class

Services to leave running on the target during protection JobOptions.TargetServicesOptions.FailoverServices

Test Failover

Set Options Field Equivalent JobOptions Class

Use default replica virtual machine JobOptions.VRAOptions.TestFailover.ReplicaDisplayName

Use alternate test replica virtual
machine

JobOptions.VRAOptions.TestFailover.ReplicaDisplayName

Display name JobOptions.VRAOptions.TestFailover.ReplicaDisplayName

Do not connect replica network
adapter on test failover

JobOptions.VRAOptions.VirtualSwitchMappingTestFailover.TargetVirtualSwitch

Connect andmap replica network
adatpers on test failover

JobOptions.VRAOptions.VirtualSwitchMappingTestFailover.SourceVirtualSwitch

Replica Virtual Switch JobOptions.VRAOptions.VirtualSwitchMappingTestFailover.TargetVirtualSwitch

Set VLAN onReplica JobOptions.VRAOptions.ReplicaNetworkInterfaceInfo.VLAN_ID_TestFailover

Replica VLAN JobOptions.VRAOptions.ReplicaNetworkInterfaceInfo.VLAN_ID_TestFailover

Replica Disk Format JobOptions.VRAOptions.TestFailover.Volumes.DiskProvisioningType

Target Volume
Target Datastore

JobOptions.VRAOptions.TestFailover.Volumes.VirtualDiskPath

Disk Properties, Datastore JobOptions.VRAOptions.TestFailover.DiskOptions.VirtualDiskPath

Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping 499

Set Options Field Equivalent JobOptions Class

Disk Properties, Replica disk format JobOptions.VRAOptions.TestFailover.DiskOptions.DiskProvisioningType

VolumeGroup Properties, Datastore JobOptions.VRAOptions.TestFailover.LvmOptions.VolumeGroup.LogicalVolume.
VirtualDiskPath

JobOptions.VRAOptions.TestFailover.LvmOptions.VolumeGroup.PhysicalVolume.
VirtualDiskPath

VolumeGroup Properties, Replica
disk format

JobOptions.VRAOptions.TestFailover.LvmOptions.VolumeGroup.PhysicalVolume.
DiskProvisioningType

Partition Properties, Datastore JobOptions.VRAOptions.TestFailover.Volumes.VirtualDiskPath

Partition Properties, Replica disk
format

JobOptions.VRAOptions.TestFailover.Volumes.DiskProvisioningType

Delete test failover virtual disks JobOptions.VRAOptions.TestFailover.DeleteVirtualDisks

Send data to the test failover server
using this route

JobOptions.FullServerTestFailoverOptions.TestFailoverServerAddress

Test failover server JobOptions.FullServerTestFailoverOptions.TestFailoverServerCredential.TestFailoverServerHostUri

Delete snapshots taken during test
failover

JobOptions.FullServerTestFailoverOptions.DeleteSnapshots

Test Failover Scripts

Set Options Field Equivalent JobOptions Class

Post-failover script, Script file JobOptions.ApplicationOptions.TestPostFailoverScript

Post-failover script, Arguments JobOptions.ApplicationOptions.TestPostFailoverScriptArguments

Pre-failback script, Script file JobOptions.ApplicationOptions.TestPreFailbackScript

Pre-failback script, Arguments JobOptions.ApplicationOptions.TestPreFailbackScriptArguments

Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping 500

Chapter 7 Server and job settings
The easiest way to view and change select server and job settings is through the Carbonite Replication Console.
However, not all of the settings are available there, especially for Linux servers. To view and update the remaining
settings, in addition to the settings available in the console, you will need to go to HKEY_LOCAL_
MACHINE\SOFTWARE\NSI Software\Double-Take\CurrentVersion in the registry on aWindows server. For a
Linux server, you can use DTSetup tomodify the configuration settings or manually modify /etc/DT/DT.conf. For
Windows or Linux, you can use the Carbonite PowerShell cmdlets Get-DtOption and Set-DtOptions.

The following table lists all of theWindows and Linux server and job settings, in decimal value.

l Windows server and job settings on page 502
l Linux server and job settings on page 536

Chapter 7 Server and job settings 501

Windows server and job settings
The following table lists all of theWindows server and job settings, in decimal value.

Carbonite products share the same set of server and job settings. Youmay only have a subset of the
settings listed below depending on yourWindows operating system and Carbonite product.

Carbonite Availability terminology is used in the following list. For example, failover is used for Carbonite
Availability and cutover for Carbonite Migrate.

AcquireDataRetryLimit

Description—The length of time, in milliseconds, spent retrying a file read if there is a read
error

Values—Any positive, integer value

Default—2000

Console setting—None

Service restart required—No

ActivationCode

Description—24-character Carbonite license key

Values—Unique value for each customer

Default—N/A

Console setting—Edit Server Properties page, Licensing section, Current license keys

Service restart required—No

AddOnCodes

Description—This setting is no longer used.

ArchiveLoopAttempts

Description—This setting is no longer used.

ArchiveLoopDelay

Description—This setting is no longer used.

AutoCalcEulaAccepted

Description—Used internally by Carbonite. Do not modify this entry.

AutoReconnect

Description—Specifies whether to reinstate the target connection(s) when the sourcemachine
is brought online after a sourcemachine failure

Values—0Do not reconnect, 1 Reconnect

Default—1

Chapter 7 Server and job settings 502

Console setting—Edit Server Properties page, Setup section, Automatically reconnect during
source initialization

Service restart required—Yes

AutoRemirror

Description—Specifies whether to remirror when a source is brought online after an auto-
disconnect

Values—0Do not compare or send any files, 1 Compare file attributes and send the attributes
and bytes that are different, 2 Do not compare files, just send all files (the entire file), 3
Compare file attributes and send the entire file for those that are different, 4 Compare file
attributes and data and send the attributes and bytes that are different

Default—1

Console setting—Edit Server Properties page, Setup section, Behavior when automatically
remirroring

Service restart required—No

AutoRemirrorRetry

Description—Specifies how often, in seconds, the source should check for connections that
have been reconnected but still need to be remirrored

Values—any integer

Default—30

Console setting—None

Service restart required—No

AutoRetransmit

Description—Determines whether or not a source that has lost its connection with a target will
attempt to reconnect to the target

Values—0Do not attempt to reconnect, 1 Attempt to reconnect

Default—1

Console setting—None

Service restart required—No

BackupDir

Description—Location on the target of the backup of the protected data sets

Values—any valid path

Default—the location where the Carbonite files were installed

Console setting—None

Service restart required—No

Chapter 7 Server and job settings 503

CalculateByVolume

Description—Calculates the approximate size of a protected data set by using the size of the
volume and subtracting the free space

Values—0Disabled, 1 Enabled

Default—0

Console setting—None

Service restart required—Yes

CalculateOnConnect

Description—Specifies whether or not the amount of data to bemirrored should be calculated
on connection

Values—0Do not calculate on connection, 1 Calculate on connection

Default—1

Console setting—Edit Server Properties page, Source section, Calculate size of protected
data upon connection

Service restart required—Yes

ChangeJournalState

Description—An internal setting for change journal tracking. Do not modify this setting.

ChangeJournalSystemState

Description—An internal setting for change journal tracking. Do not modify this setting.

ChecksumAll

Description—Indicates if a mirror, verify, or restore will ignore all attributes and perform a
checksum calculation on all files

Values—0Compare files by attribute, 1 Compare files by checksums

Default—1

Console setting—None

Service restart required—No

ClusterDir

Description—Location of aMicrosoft Cluster Service installation, if it exists

Values—any valid path

Default—determined by theMicrosoft Cluster Service installation

Console setting—None

Service restart required—No

ConnectionFile

Description—Name of the database file containing connection information

Values—any valid file name

Chapter 7 Server and job settings 504

Default—connect.sts

Console setting—None

Service restart required—No

CreateDumpOnAckErrors

Description—Enables additional logging for out of order acknowledgement errors

Values—0Do not create a logging file, 1 Create a logging file

Default—0

Console setting—None

Service restart required—No

DataPath

Description—The location of the Carbonite file attribute, protected data set, connection, and
schedule database files

Values—any valid path

Default—the location where the Carbonite files were installed

Console setting—None

Service restart required—No

DefaultAddress

Description—The default primary IP address in amulti-homed server

Values—any valid IP address that will act as your primary IP address for connecting the source
to the target

Default—<null>

Console setting—Edit Server Properties page, General section, Default address

Service restart required—Yes

DefaultProtocol

Description—The default protocol

Values—2 IPv4 protocol only, 23 IPv4 and IPv6 protocols, 3 TDU (Throughput Diagnostics
Utility)

Default—23

Console setting—None

Service restart required—Yes

DefaultReaderType

Description—Internal setting used for recoveries. Do not modify this setting.

DelayGCArbitration

Description—This setting is no longer used.

Chapter 7 Server and job settings 505

DelayGCConnection

Description—This setting is no longer used.

DiffMirrorHardLinkCleanup

Description—This setting is no longer used.

DisableAttributeReplication

Description—Specifies whether or not attributes (read-only, hidden, and so on) are replicated
to the target

Values—0Enable attribute replication, 1 Disable attribute replication

Default—0

Console setting—None

Service restart required—No

DriverJournalValid

Description—An internal setting for change journal tracking. Do not modify this setting.

DropOpOnAccessDeniedError

Description—Specifies whether or not operations are dropped or retried after an access denied
error

Values—0The operation will be retried, 1 The operation will be dropped

Default—1

Console setting—None

Service restart required—No

DropOpOnHandleError

Description—Determines if an additional attempt is made to access a file by aMicrosoft API
call if the Carbonite call fails.

Values—0When opening a file using the Carbonite driver fails, attempt to open the file usingthe
Microsoft Win32 API, 1When opening a file using the Carbonite driver fails, skip the file and
document it in the Carbonite log

Default—1

Console setting—None

Service restart required—No

Notes—If the value is set to 0 and theWin32 call also fails, Carbonite will skip the file and
document it in the Carbonite log

DTSetupType

Description—Used by the Carbonite installation program tomaintain the installation settings
for an upgrade. Do not modify this setting.

Chapter 7 Server and job settings 506

DumpDiskQuotaIntervalMinutes

Description—Specifies how often, in minutes, a snapshot of the disk quota is taken as a
backup in case the live registry is not usable at failover or cutover

Values—any integer

Default—240

Console setting—None

Service restart required—No

DumpHiveIntervalMinutes

Description—Specifies how often, in minutes, a snapshot of the registry is taken as a backup
in case the live registry is not usable at failover or cutover

Values—any integer

Default—240

Console setting—None

Service restart required—No

EnableCRCCheck

Description—Indicates if Carbonite will perform a cyclic redundancy check between the
source and target to identify corrupted packets

Values—0Disabled, 1 Enabled

Default—0

Console setting—None

Service restart required—No

Notes—This option only needs to be set on the source server. However, if you will be restoring
or reversing, where the roles of the servers are reversed, then you will need to set this option on
the target as well.

EnableDHCP

Description—Indicates if Carbonite DHCP support is enabled

Values—0Disabled, 1 Enabled

Default—1

Console setting—None

Service restart required—No

EnableEFSVerify

Description—Indicates if Carbonite will verify Microsoft encryption on the source before
transmitting the encrypted file to the target

Values—0Disabled, 1 Enabled

Default—0

Chapter 7 Server and job settings 507

Console setting—None

Service restart required—No

EnableFileOpenTracing

Description—Specifies if debug-level messages are enabled to trace all mirroring and
replicated files that are opened

Values—0Do not trace files that are opened, 1 Trace files that are opened

Default—0

Console setting—None

Service restart required—Yes

Notes—This option should only be enabled (1) for temporary, debug sessions as instructed by
technical support.

EnableRootEncryption

Description—Specifies if the top-level folders of a protected data set are encrypted on the
source, they will be encrypted on the target as well

Values—0Disabled, 1 Enabled

Default—1

Console setting—None

Service restart required—No

Notes—If the top-level folders in a protected data set are not encrypted, disabling this option
may obtain a small performance improvement.

EnableShortFileNameProcessing

Description—Indicates if Carbonite will correct any short file names created by the operating
system on the target during amirror. It will also correct any short file names created or renamed
by the operating system on the target during replication.

Values—0Do not correct any short file names on the target, 1 Correct short file names on the
target

Default—0

Console setting—None

Service restart required—No

Notes—This setting only needs to be enabled on the target.

EnableSnapshots

Description—Specifies whether Carbonite snapshot functionality is enabled

Values—0Carbonite snapshot functionality is disabled, 1 Carbonite snapshot functionality is
enabled

Default—1

Console setting—None

Chapter 7 Server and job settings 508

Service restart required—Yes

Notes—This setting only impacts Carbonite snapshot functionality. If this setting is disabled,
other snapshot software such as Microsoft Volume Shadow Copy will be not be impacted.

EnableTaskCmdProcessing

Description—Queues tasks inline with replication data

Values—0Disable task command processing, 1 Enable task command processing

Default—0

Console setting—Edit Server Properties page, Setup section, Enable task command
processing

Service restart required—No

EncryptNetworkData

Description—Encrypts Carbonite data before it is sent from the source to the target

Values—0Disable data encryption, 1 Enable data encryption

Default—0

Console setting—Edit Server Properties page, General section, Encrypt network data

Service restart required—No

Notes—Both the source and target must be Carbonite encryption capable (Carbonite version
7.0.1 or later), however this option only needs to be enabled on the source or target in order to
encrypt data. Keep inmind that all jobs from a source with this option enabled or to a target with
this option enabled will have the same encryption setting. Changing this option will cause jobs
to auto-reconnect and possibly remirror.

FailoverData1

Description—An internal setting for failover. Do not modify this setting.

FailoverData2

Description—An internal setting for failover. Do not modify this setting.

FileAccessRetry

Description—The number of times a failed driver call will be retried by the service.

Values—1 - 65535

Default—10

Console setting—None

Service restart required—No

FileQueueSize

Description—When amirror is started, one thread reads from the disk and builds the file
queue. Another set of threads reads files off of the queue and sends them to the target. This
setting is themaximum size of the queue in entries. If you had 100 files to bemirrored and this

Chapter 7 Server and job settings 509

was set to 16 (the default value), the first thread would fill the queue to amaximum of 16
entries.

Values—1 - 65535

Default—16

Console setting—None

Service restart required—No

Notes—This valuemust be set prior to starting themirror process. The higher the number, the
morememory that is used.

ForceVerifyOnMirror

Description—Specifies if verification will be performed with every differencemirror

Values—0Verification is not performed with every differencemirror, 1 Verification is performed
with every differencemirror

Default—0

Console setting—None

Service restart required—No

HardlinkInterval

Description—This setting is no longer used.

HardLinkLogPath

Description—Specifies the location where hard links will be logged. If no path is specified, the
location defined in LogDir will be used.

Values—any valid path

Default—None

Console setting—None

Service restart required—No

Note—This option is only used by servers running Carbonite version 8.0.x or earlier.

HBTTL

Description—Number of seconds without receiving a heartbeat before a remotemachine is
considered unavailable

Values—0 - 65535

Default—10

Console setting—None

Service restart required—No

HeartbeatIgnoreIPs

Description—This setting is no longer used.

Chapter 7 Server and job settings 510

HPQueueRatio

Description—Ratio of replication packets to onemirror packet

Values—1 - 65535

Default—5

Console setting—Edit Server Properties page, Source section, Number of replication packets
per onemirror packet

Service restart required—No for future connections, Yes for the current connection

Notes—AnHPQueueRatio of 5 allows Carbonite to dynamically change the ratio as needed
based on the amount of replication data in queue. If you set a specific value other than the
default (other than 5), the specified value will be used.

IgnoreAlternateStreamFiles

Description—Specifies alternate streams to skip duringmirroring and replication

Values—a semi-colon separate list of stream names. The stream names are not case-
sensitive

Default—none

Console setting—None

Service restart required—No

IgnoreArchiveBit

Description—Specifies if the archive bit is compared during verification

Values—0Archive bit is compared during a verification, 1 Archive bit is not compared during a
verification

Default—1

Console setting—None

Service restart required—No

IgnoreDeleteOps

Description—Specifies if file and directory delete operations will be replicated to the target

Values—0Delete operations are replicated to the target, 1 Delete operations are not replicated
to the target

Default—0

Console setting—None

Service restart required—No

IgnoreOpLockErrors

Description—Specifies how files that are locked open on the source are handled during
mirroring

Chapter 7 Server and job settings 511

Values—0Fail themirror and record OpLock errors in the log. The job state will be set to mirror
required, 1 Ignore the lock errors and continue themirror. This option does not guarantee data
integrity. Theremay be differences in the file that was locked.

Default—0

Console setting—None

Service restart required—No

IgnorePPPAddresses

Description—Identifies if Carbonite will use PPP (Point-to-Point Protocol) or SLIP (Serial Line
Internet Protocol) adapters

Values—0Carbonite will send out heartbeats across the PPP/SLIP adapter, 1 Carbonite will
not send out heartbeats across the PPP/SLIP adapter

Default—1

Console setting—None

Service restart required—No

IgnoreSourceErrors

Description—This setting is no longer used.

IgnoreThumbnailStreams

Description—Specifies if thumbnails will be replicated to the target.

Values—0Carbonite will mirror and replicate all data streams, 1 Carbonite will not mirror or
replicate any data about the alternate data streams for thumbnail images. When comparing data
for a verification or differencemirror,alternate data streams for thumbnails will not be reported
as different.

Default—1

Console setting—None

Service restart required—If you change this value to 0, youmust restart the Double-Take
service in order for the Carbonite driver to begin sending all data stream information to the
service. If you change this value to 1, you do not need to restart the service.

IgnoreWriteFailureOnTarget

Description—Specifies whether failures to write a file on the target are logged

Values—0Log all write failures on the target, 1 or any larger integer indicates that number of
write failures which will be ignored before starting to log the write failures

Default—0

Console setting—None

Service restart required—No

IncludeSysVolInfo

Description—Specifies whether the system volume information folder is mirrored and
replicated

Chapter 7 Server and job settings 512

Values—0Do not include the system volume information folder, 1 Include the system volume
information folder

Default—0

Console setting—None

Service restart required—No

InstallPath

Description—Path specified during the Carbonite installation. Do not modify this entry.

InstallVersionInfo

Description—Installation number specified during the Carbonite installation. Do not modify
this entry.

IntermediateQueueLimit

Description—Amount of memory, in KB, that may be allocated to the intermediate queue by
the systemmemory manager whenMemoryAllocatorMode is set to mixedmode (2).

Values—512-4194304

Default—65536

Console setting—None

Service restart required—Yes

KFAIOpenRetry

Description—Specifies the number of times an operation is retried if the driver return an error

Values—any valid integer

Default—10

Console setting—None

Service restart required—No

LanguageSelected

Description—Specifies the language of the verification log

Values—Depends on LanguagesSupported

Default—Language used during the installation

Console setting—Edit Server Properties page, Logging section, Language

Service restart required—Yes

LanguagesSupported

Description—Specifies the available languages for the verification log. Do not modify this
setting.

LastModifiedReadDelay

Description—Specifies the length of time, in seconds, to wait before reading the last modified
file time attribute

Chapter 7 Server and job settings 513

Values—any valid integer

Default—15

Console setting—None

Service restart required—No

Notes—This option is only used if SendLastModifiedTimeOnClose is disabled

LogAllOrphans

Description—Specifies whether success messages regarding orphan files are logged to the
Carbonite log

Values—0Do not log orphan file success messages to the Carbonite log, 1 Log orphan file
success messages to the Carbonite log

Default—0

Console setting—None

Service restart required—No

LogDir

Description—The location of the Carbonite messages/alerts, verification, and statistics log
files

Values—any valid path

Default—the location where the Carbonite files were installed

Console setting—Edit Server Properties page, Logging section, Logging folder

Service restart required—Yes

LogFile

Description—The name of the Carbonite messages/alerts log file

Values—any valid file name

Default—DTLog

Console setting—None

Service restart required—No

LogHardlinks

Description—This setting is no longer used.

LogMessageLevel

Description—Specifies the types of messages logged to the.dtl files

Values—0Nomessages will be logged, 1 Only alert messages will be logged, 2 Alert and
releasemessages will be logged, 3 Alert, release, and debugmessages will be logged

Default—2

Console setting—None

Service restart required—No

Chapter 7 Server and job settings 514

MaxChecksumBlocks

Description—Specifies the number of checksum values retrieved from the target

Values—any integer

Default—32

Console setting—None

Service restart required—No

MaxConnections

Description—Number of network requests that can be processed simultaneously. Windows is
limited to 5 simultaneous requests.

Values—0 - 65535

Default—5

Console setting—None

Service restart required—Yes

Notes—Carbonite recommends that you not change this value.

MaxLogFileSize

Description—Maximum size, in bytes, of any .dtl log file

Values—limited by available disk space

Default—5242880

Console setting—Edit Server Properties page, Logging section, Maximum size (under
Messages & Alerts)

Service restart required—No

MaxLogPathname

Description—Themaximum length of a file name (the entire volume\directory\filename
including slashes, spaces, periods, extensions, and so on) that will be displayed in the
Carbonite log file and theWindows Event Viewer. File names longer than the
MaxDisplayablePath will be truncated and will be followed by an ellipsis (...).

Values—1-32760

Default—32760

Console setting—None

Service restart required—No

MaxNumberofLogFiles

Description—Maximum number of .dtl log files that can exist at one time. When Carbonite
creates a new .dtl file, if this number is exceeded, the oldest .dtl file is deleted.

Values—1 - 999

Default—20

Chapter 7 Server and job settings 515

Console setting—Edit Server Properties page, Logging section, Maximum number of files

Service restart required—No

MaxOpBufferSize

Description—An internal setting for memory buffering. Do not modify this setting.

MaxRemoveOrphansOpSize

Description—Determines whether or not Carbonite will send over multiple orphan operations.
Carbonite will send over the operations if a directory has more files than this number.

Values—0 - 131072

Default—1000

Console setting—None

Service restart required—No

MaxRetry

Description—A generic, application wide setting specifying the number of retry attempts for
processes such as creating sockets, starting the service, and so on

Values—any integer

Default—5

Console setting—None

Service restart required—Yes

MaxWriteChunkSize

Description—Maximummerged op size (in bytes) used during replication

Values—1 - 131072

Default—65536

Console setting—None

Service restart required—No

MemoryAllocatorCallbackMode

Description—Determines what action is taken when theMemoryQueueToDiskThreshold is
met

Values—0Auto-disconnect processing is initiated when theMemoryQueueToDiskThreshold
has beenmet. Connections will be reestablished when auto-reconnect occurs, 1 The Double-
Take service stops pulling operations from the driver when theMemoryQueueToDiskThreshold
has beenmet. The target will pause the source.The service will resume pulling operations when
the target tells the source to resume, 2 The source and target begin queuing operations to disk.

Default—2

Console setting—None

Service restart required—Yes

Chapter 7 Server and job settings 516

MemoryQueueToDiskThreshold

Description—A percentage of QmemoryBufferMax that will trigger queuing to disk.

Values—any valid percentage

Default—75

Console setting—None

Service restart required—Yes

MinCompressionFileSize

Description—Theminimum file size, in bytes, that will be compressed. Files smaller than this
size will not be compressed.

Values—any file size

Default—1024

Console setting—None

Service restart required—No

MirrorChunkSize

Description—Block size, in bytes, used in themirroring process

Values—1 - 1048576

Default—65536

Console setting—Edit Server Properties page, Source section, Size of mirror packets

Service restart required—No

Notes—A higher block size value gives you better throughput, but only to a certain point, then it
starts usingmorememory (this has to do with the way memory is allocated and deallocated). A
lower block size value produces slower throughput, but uses memory efficiently.

MirrorEncryptedFiles

Description—Specifies if Windows 200x encrypted files aremirrored

Values—0Encrypted files are not mirrored, 1 Encrypted files aremirrored

Default—1

Console setting—None

Service restart required—No

MirrorOverwrite

Description—Determines if themirror process overwrites existing files

Values—0never overwrite, 1 always overwrite, 2 overwrite if older

Default—1

Console setting—None

Service restart required—No

Chapter 7 Server and job settings 517

MirrorQueueLimit

Description—Maximum number of mirror operations that can be queued on the source
machine

Values—1 - 65535

Default—1000

Console setting—Edit Server Properties page, Source section, Maximum pendingmirror
operations

Service restart required—No

MirrorRootAttributes

Description—Specifies whether or not root permissions from the source aremirrored to the
target

Values—0Root permissions are not mirrored to the target, 1 Root permissions aremirrored to
the target

Default—1

Console setting—None

Service restart required—No

MirrorZeroKFiles

Description—Specifies whether or not empty files, zero byte files, are included in amirror

Values—0Zero byte files are skipped and not mirrored to the target, 1 All files aremirrored to
the target

Default—1

Console setting—None

Service restart required—No

Notes—If MirrorZeroKFiles is enabled (0), zero byte files are skipped during a full mirror, file
differences mirror, and a verification with synchronization. Zero byte files that contain alternate
data streams that are not empty, will still be skipped if MirrorZeroKFiles is enabled.

MoveOrphanedFiles

Description—This entry is no longer used.

MoveOrphansDir

Description—This entry is no longer used.

NetworkRetry

Description—Specifies the interval, in seconds, at which Carbonite will attempt to reconnect
to the target

Values—any positive number

Default—10

Console setting—None

Chapter 7 Server and job settings 518

Service restart required—No

NetworkStatusInterval

Description—An internal setting for network communications. Do not modify this setting.

NetworkTimeout

Description—Themaximum length of time, in seconds, to wait on a network connection. If
data is not received over a network connection within the specified time limit, the connection is
closed. During idle periods, Carbonite sends small amounts of keep-alive data at an interval 1/6
of the NetworkTimeout value to keep the socket from being inadvertently closed.

Values—any integer

Default—120

Console setting—None

Service restart required—No

NodeLockedLicenseKey

Description—An internal setting for licensing. Do not modify this setting.

NodeLockedServerInfo

Description—An internal setting for licensing. Do not modify this setting.

OpBufferMax

Description—Specifies the number of operations that can be stored in thememory queue prior
to queuing to disk

Values—0There is no limit to the number of operations that can be stored in thememory
queue, 1 or any larger integer

Default—200000

Console setting—None

Service restart required—No

OpBuffersCount

Description—An internal setting for memory buffering. Do not modify this setting.

OpLogging

Description—Specifies whether operations from the Carbonite driver are logged

Values—0Do not log operations, 1 Log operations

Default—0

Console setting—None

Service restart required—Yes

OutOfOrderDiff

Description—Themaximum number of operations that can be out of order before the
connection is paused

Chapter 7 Server and job settings 519

Values—any integer

Default—10

Console setting—None

Service restart required—No

Notes—The larger the value, themorememory the Double-Take service on the targe service
will use.

Port

Description—Port connection for core Carbonite communications

Values—1025 - 65535

Default—6320

Console setting—Edit Server Properties page, General section, Port

Service restart required—Yes

ProductCode

Description—Used by the Carbonite installation program tomaintain the installation settings
for an upgrade. Do not modify this entry.

ProductName

Description—Used by the Carbonite installation program tomaintain the installation settings
for an upgrade. Do not modify this entry.

QJournalDir

Description—The location where the queue is stored.

Values—any valid path

Default—the location specified during the installation

Console setting—Edit Server Properties page, Queue section, Queue folder

Service restart required—No

Notes—For best results and reliability, you should select a dedicated, non-boot volume. The
queue should be stored on a fixed, local NTFS volume. This location also stores the Carbonite
driver pagefile.

QJournalFileSize

Description—The size, in MB, of each queuing transaction log file.

Values—any valid file size, up to 4095MB

Default—5

Console setting—None

Service restart required—No

Chapter 7 Server and job settings 520

QJournalFreeSpaceMin

Description—Theminimum amount of disk space, in MB, in the specified QJournalDir that
must be available at all times.

Values—dependent on the amount of physical disk space available

Default—250

Console setting—Edit Server Properties page, Queue section, Minimum free disk space

Service restart required—No

Notes—TheQJournalFreeSpaceMin should be less than the amount of physical disk space
minus QJournalSpaceMax.

QJournalPreload

Description—The number of operations being pulled from the disk queue at one time. Do not
modify this setting.

QJournalSpaceMax

Description—Themaximum amount of disk space, in MB, in the specified QJournalDir that
can be used for Carbonite queuing. When this limit is reached, Carbonite will automatically
begin the auto-disconnect process.

Values—dependent on the amount of physical disk space available

Default—Unlimited

Console setting—Edit Server Properties page, Queue section, Limit disk space for queue

Service restart required—No

Notes—The unlimited setting allows the disk queue usage to automatically expand whenever
the available disk space expands. Setting this option to zero (0) disables disk queuing. Even if
you are using the unlimited option, Carbonite will only store 16,384 log files. If you are using the
default 5MB file size, this is approximately 80GB of data. If you anticipate needing to be able to
queuemore data than this, you should increase the size of the log files.

QLogWriteThrough

Description—Specifies if the disk queues are write-throughmode

Values—0Disk queues are not write-throughmode, 1 Disk queues are write-throughmode

Default—0

Console setting—None

Service restart required—No

Notes—While write-throughmodemay decrease the frequency of auto-disconnects, it may
also decrease the performance of the source server.

QMemoryBufferMax

Description—The amount of Windows systemmemory, in MB, that, when exceeded, will
trigger queuing to disk.

Values—minimum 512, maximum is dependent on the server hardware and operating system

Chapter 7 Server and job settings 521

Default—1024

Console setting—Edit Server Properties page, Queue section, Amount of systemmemory to
use

Service restart required—Yes

QueryOnQuorumFile

Description—Identifies if the Double-Take service will reopen closed files on the quorum drive

Values—0TheDouble-Take service will not attempt to reopen a closed file on the quroum drive
to get security descriptors or last modified times, 1 The Double-Take service will attempt to
reopen a closed file on the quroum drive to get security descriptors or last modified times.

Default—1

Console setting—None

Service restart required—No

QueueSizeAlertThreshold

Description—The percentage of the queue that must be in use to trigger an alert message

Values—any valid percentage

Default—50

Console setting—Edit Server Properties page, Queue section, Alert at this queue usage

Service restart required—Yes

RemoveAllOrphans

Description—This entry is no longer used.

RemoveOrphansTime

Description—This entry is no longer used.

ReplicateNtSecurityByName

Description—Determines whether or not Carbonite replicates permissions and attributes
assigned to local (non-domain) users and groups

Values—0Do not replicate by name, 1 Replicate by name

Default—0

Console setting—Edit Server Properties page, Source section, Replicate NTFS security
attributes by name

Service restart required—No

ReplicationDiskCheckScript

Description—Specifies the script to run if validation of the replication drive fails

Values—Any valid path and script file

Default—<null>

Console setting—None

Chapter 7 Server and job settings 522

Service restart required—No

ReplicationDiskCheckTimeOut

Description—Specifies the interval, in seconds, between validation checks when
ReplicationDiskCheckSript is populated

Values—any integer

Default—300

GUI Setting—None

Service restart required—No

RepSetDBName

Description—Name of the database that contains protected data set information

Values—any valid file name

Default—DblTake.db

Console setting—None

Service restart required—No

RunDTInfoOnCutover

Description—Specifies if DTInfo is launched before a failover or cutover when protecting an
entire server

Values—0Do not launch DTInfo, 1 Launch DTInfo

Default—1

Console setting—None

Service restart required—No

RunScriptatSnaptime

Description—If a script is specified, the script is launched on the target before Carbonite
executes any snapshots. The snapshot will not be executed until the script has completed. If
the script returns an error, the snapshot will still execute.

Values—any valid path and script name

Default—<null>

Console setting—None

Service restart required—No

RunScriptInsteadofSnap

Description—Specifies if a script specified in RunScriptAtSnaptime is executed

Values—0Execute script specified in RunScriptAtSnaptime, 1 Do not execute script specified
in RunScriptAtSnaptime

Default—1

Console setting—None

Chapter 7 Server and job settings 523

Service restart required—No

SaveStatFile

Description—Determines if the statistic.sts (statistics logging) file is saved or ovewritten

Values—0overwrite, 1 saved as statistic-old.sts

Default—1

Console setting—None

Service restart required—No

ScheduleFile

Description—Name of the database file that contains transmission scheduling information

Values—any valid file name

Default—Schedule.sts

Console setting—None

Service restart required—Yes

ScheduleInterval

Description—The number of seconds to wait before checking the transmission schedules to
see if transmission should be started or stopped

Values—1 - 3600

Default—1

Console setting—None

Service restart required—Yes

SendDirLastModifiedTime

Description—Specifies if the last modified time for directories will be transmitted to the target
during a differencemirror

Values—0 last modified time on directories will not be sent to the target, 1 last modified time on
directories will be sent to the target

Default—1

Console setting—None

Service restart required—No

SendFileTimesOnCreate

Description—Specifies whether a file is accessed twice so that the file’s creation time can be
modified tomatch the source

Values—0TheDouble-Take service will not access newly created files that have not been
modified. These files on the target will have the date and time of when the file was created on
the target, 1 The Double-Take service will access newly created files. These files on the target
will have the same date and time as the source.

Default—0

Chapter 7 Server and job settings 524

Console setting—None

Service restart required—No

Notes—New files created on the source that have not beenmodified will have the date and
time of when the file is created on the target. The date and time will be corrected tomatch the
source’s true file attributes when a remirror or verificationmodifies them tomatch the source or
the file is modified by a user or application on the source. For example, if the sourcemachine's
clock is set to 2:00 PM and the target machine is set to 4:00 PM, a newly created file that has
not beenmodified will have a time stamp of 4:00 PM when it is applied to the target. If this
option is enabled (1), Carbonite will access the file twice, to correctly set the time to 2:00 PM to
reflect the file’s true attributes. If this option is disabled (0), Carbonite will not access the file
twice, and the file will have the target time of 4:00 PM until it is modified (remirror, verification,
or user or application update).

SendLastModifiedTimeOnClose

Description—Specifies that the last modified time attribute is sent when a file is closed

Values—0Last modified time is sent when Carbonite has not received any additional
operations for the file in the time period specified by LastModifiedReadDelay, 1 Last modified
time is sent when a file is closed, whichmay not be immediately depending on system
processing

Default—1

Console setting—None

Service restart required—No

Notes—If system processing delays (such as the system cachemanager not flushing quickly
enough) are causing delays in processing the last modified time, youmay want to consider
disabling this option (0).

ServerUUID

Description—Used internally by the Double-Take service to identify Carbonite connections
and IP addresses used between servers

Values—Unique identifier generated by Carbonite

Default—Generated by Carbonite

Console setting—None

Service restart required—Yes

Notes—If you are certain that the server is not being used by any jobs, you can delete the
ServerUUID. For example, youmay want to delete the ServerUUID so that you can create an
image of a server after installing Carbonite. A deleted ServerUUID will be re-created the next
time the Double-Take service is started. Keep inmind, if you delete the ServerUUID and the
server is being used by any jobs, you will have problems with all aspects of Carbonite including
mirroring, replication, and failover.

ServicePriority

Description—The priority level at which the Double-Take service runs.

Values—2normal priority, 3 high priority

Chapter 7 Server and job settings 525

Default—2

Console setting—None

Service restart required—Yes

Notes—TheDouble-Take service runs at normal priority by default. This option should not be
modified, however, if the priority is raised to high (3), it can be done throughWindows Task
Manager.

ServicesToKeepRunning

Description—Services that will not be stopped on the target

Values—Semi-colon separated list of service names

Default—<null>

Console setting—Set Options page, Target Services section, Services to leave running on the
target server during protection

Service restart required—No

Notes—You can specify the service name using the service executable file name or the service
display name. There is no need to use quotationmarks, even if the names have spaces in
them. Only separate the names by a semi-colon (;).

ServiceStopState

Description—Used internally by the Double-Take service. Do not modify this entry.

ShortFileNameScanIntervalMinutes

Description—Specifies how often, in minutes, the registry is scanned for short file names

Values—any valid integer

Default—240

Console setting—None

Service restart required—No

ShutdownRebootTimeoutMinutes

Description—Specifies the amount of time, in minutes, to wait for the source to shutdown
during failover or cutover

Values—any valid integer

Default—5

Console setting—None

Service restart required—No

ShutdownTimeout

Description—The amount of time, in seconds, for the service to wait prior to completing the
shutdown so that Carbonite can persist data on the target in an attempt to avoid a remirror when
the target comes back online

Chapter 7 Server and job settings 526

Values—any valid number of seconds where 0 (zero) indicates waiting indefinitely and any
other number indicates the number of seconds

Default—0

Console setting—Edit Server Properties page, Setup section, Time allowed to complete
shutdown operations

Service restart required—No

Notes—This setting only controls the service shutdown from the Carbonite clients. It does not
control the service shutdown through a reboot or from the Service Control Manager.

SkipCompressionFileExt

Description—A period delimited list of file types that are not compressed, even if compression
is enabled.

Values—any period delimited list of file types

Default—mp3.exe.wmv.wma.qt.mpg.mpeg.zip.jpg.jpeg.tiff.tar.rar.cab

Console setting—None

Service restart required—No

SnapshotType

Description—Specifies the type of snapshot that Carbonite takes

Values—0Create a client-accessible or non-client-accessible snapshot based on the job type ,
1 Always create a client-accessible snapshot, 2 Always create a non-client-accessible
snapshot

Default—0

Console setting—None

Service restart required—No

SNMPTrace

Description—An internal setting for SNMP onWindows 2003 servers. Do not modify this
setting.

SourcePendingAcks

Description—The number of operations received by the target queue in which the source is
waiting for a response

Values—100 - 20,000

Default—2000

Console setting—None

Service restart required—No

SSMShutdownServices

Description—Used by full server jobs to determine services to shutdown during failover or
cutover. Do not modify this entry.

Chapter 7 Server and job settings 527

StartupScript

Description—Used by full server jobs to control the post-failover script after reboot after
failover. Do not modify this entry.

StatsDriverLogFlags

Description—Indicates which driver statistics are logged to the Carbonite log

Values—0No driver statistics are logged, 1 State, 2 Operations, 4 Paging, 8 Timing

Default—0

Console setting—None

Service restart required—Yes

Notes—Use the sum of various values to logmultiple driver statistics. For example, a setting
of 5 would log paging and state statistics. A setting of 7 would log paging, operations, and state
statistics. A setting of 15 would log all driver statistics.

StatsFileName

Description—Default file for logging statistics

Values—any valid file name

Default—statistic.sts

Console setting—Edit Server Properties page, Logging section, Filename (under Statistics)

Service restart required—No

StatsLoggingOn

Description—Specifies if Carbonite logs statistics at startup

Values—0Stats logging does not start when Carbonite starts, 1 Stats logging starts when
Carbonite starts

Default—0

Console setting—Edit Server Properties page, Setup section, Setup Options, Log statistics
automatically

Service restart required—No

StatsMaxFileSize

Description—Maximum size, in MB, for the statistic.sts file

Values—limited by available disk space

Default—10485760

Console setting—Edit Server Properties page, Logging section, Maximum size (under
Statistics)

Service restart required—No

StatsWriteInterval

Description—Interval, in minutes, in which statistics are written to the statistic.sts file

Chapter 7 Server and job settings 528

Values—0 - 65535

Default—5

Console setting—Edit Server Properties page, Logging section, Write interval

Service restart required—No

SystemMemoryLimit

Description—Set by the Double-Take service, each time it is started, to record the amount of
available memory.

TargetPaused

Description—Internal setting that indicates if the target machine is paused. Do not modify this
setting.

TargetPausedVirtual

Description—Internal setting that indicates which target machines are paused. Do not modify
this setting.

TCPBufferSize

Description—Size of the TCP/IP buffer in bytes.

Values—4096-7500000

Default—375000

Console setting—None

Service restart required—Yes

Notes—The default setting creates a TCP window that will accommodatemost environments.
In most environments, this value will not need to be adjusted. However, if your Carbonite
network has a long end-to-end route and the throughput is not where you would expect it to be,
then adjusting this parameter may have beneficial results. This value is the bandwidth delay
product, which is calculated using the bandwidth of the network (in bits/second) times the round
trip time (in seconds) between the two ends. Use the following recommended settings to
improve Carbonite throughput performance.

l 100Mbit LAN—The setting should be around 37500.
l 1Gbit LAN—The setting should be around 375000.
l WAN—The setting should be around 130000.

While the calculations are fairly straight forward, the values that have been suggested are not
exact because they depend on round trip time. Some improvements could be gained by
adjusting these values either higher or lower. The value suited for your environment can best be
determined through trial and error testing.

TempDir

Description—Temporary directory used when replicatingWindows 200x encrypted files.

Values—Any valid path

Default—\Program Files\Carbonite\Replication\Temp

Console setting—None

Chapter 7 Server and job settings 529

Service restart required—No

TGApplyMntPntSecurity

Description—Applies security settings to the volume of amount point instead of applying them
to the directory that themount point is mounted to.

Values—0Security will be applied to the directory, 1 Security will be applied to the volume

Default—0

Console setting—None

Service restart required—Yes

Notes—This setting needs to be applied to the target server.

TGBlockOnConnect

Description—Blocks the target path for all connections, regardless of the source, so that the
data cannot bemodified

Values—0Target paths are not blocked, 1 Target paths are blocked

Default—0

Console setting—None

Service restart required—No

TGCloseDelay

Description—The length of time, in milliseconds, a file is held open on the target

Values—0 - 2000

Default—1000

Console setting—None

Service restart required—No

Notes—If disk caching on the target is disabled either manually or by default (for example, by
default on disks that host Active Directory database files), the target systemmay be slow
during amirror. If so, descreasing this setting to 100, 10, and 0 will result in incremental
improvements, with 0 returning the system performance to normal.

TGDaysToKeepMovedFiles

Description—Specifies the length of time, in days, to keepmoved files if
TGMoveFilesOnDelete is enabled

Values—any valid integer

Default—0

Console setting—Edit Server Properties page, Target section, Remove deleted files after this
number of days

Service restart required—No

Chapter 7 Server and job settings 530

TGDisableAttributeReplication

Description—Specifies whether or not the attributes compression, ACL, and file mask are
written to the target duringmirroring and replication

Values—0Enable attribute replication 1 Disable attribute replication

Default—0

Console setting—None

Service restart required—Yes

TGExecutionRetryLimit

Description—The number of times an unfinished operation will be retried on the target before it
is discarded. If this value is set to zero (0), an operation will never be discarded and will be
retried on the target until it is applied.

Values—0 - 65536

Default—0

Console setting—None

Service restart required—No

TGFileAlloc

Description—Indicates that Carbonite allocates an entire file on the first write of amirror
operation

Values—0Disabled 1 Enabled

Default—1

Console setting—None

Service restart required—No

Notes—To help eliminate file fragmentation on the target server, Carbonite should allocate the
entire file first. With extremely large files, the file allocationmay take a long time. Therefore,
youmay want to disable the file allocation. If you disable file allocation, you will havemore
fragmentation on the target disk.

TGMirrorCapacityHigh

Description—Maximum percentage of systemmemory that can contain mirror data before the
target signals the source to pause the sending of mirror operations.

Values—2-75

Default—20

Console setting—Edit Server Properties page, Target section, Pausemirroring at this level

Service restart required—No

TGMirrorCapacityLow

Description—Minimum percentage of systemmemory that can contain mirror data before the
target signals the source to resume the sending of mirror operations.

Chapter 7 Server and job settings 531

Values—1-75

Default—15

Console setting—Edit Server Properties page, Target section, Resumemirroring at this level

Service restart required—No

Notes—Themaximum value forTGMirrorCapacityLow is either 75 or TGMirrorCapacityHigh,
which ever is lower.

TGMoveFilesOnDelete

Description—Specifies whether files deleted on the source are actually moved to a different
location on the target rather than being deleted on the target

Values—0Files deleted on the source will be deleted on the target, 1 Files deleted on the
source will bemoved to a different location on the target

Default—0

Console setting—Edit Server Properties page, Target section, Moved deleted files to this
folder

Service restart required—No

Notes—If this option is enabled, the deleted files will bemoved to the location specified in
TGMoveFilesPath.

TGMoveFilesPath

Description—Specifies where deleted files on the source are beingmoved to on the target

Values—any valid path

Default—<null>

Console setting—Edit Server Properties page, Target section, Moved deleted files to this
folder

Service restart required—No

TGMoveFilesSingleDirectory

Description—Specifies if deleted files that will bemoved on the target (see
TGMoveFilesOnDelete) will bemoved to a single directory structure

Values—0Use the same directory structure on the target as the source to store deleted files, 1
Use a single directory structure on the target to store deleted files

Default—0

Console setting—None

Service restart required—No

TGRetryLocked

Description—Minimum number of seconds to wait before retrying a failed operation on a target

Values—0-65536

Default—3

Chapter 7 Server and job settings 532

Console setting—Edit Server Properties page, Target section, Retry delay for incomplete
operations

Service restart required—No

TGUnfinishedOpEvent

Description—Specifies whether or not unfinished operations on the target are logged to the
Event Viewer

Values—0Unfinished operationmessages are not logged, 1 Unfinished operationmessages
are logged

Default—1

Console setting—None

Service restart required—No

TGWriteCache

Description—Specifies whether or not Carbonite uses the intermediate cache

Values—0Bypass the intermediate cache and write directly to disk, 1 Do not bypass the
intermediate cache

Default—1 for all other job types

Console setting—None

Service restart required—No

TGWriteFailureBeforeNotification

Description—Specifies the number of times an operation will be retried on the target before a
notification is sent to update the target status

Values—0-1024

Default—10

Console setting—None

Service restart required—Yes

Notes—If you change the setting to 0, the notification will be disabled. Changing this option will
only affect how the target status is displayed. To solve the underlying issue of why the
operations are failing will require investigation into the Carbonite log files.

UpgradeCode

Description—Used by the Carbonite installation program tomaintain the installation settings
for an upgrade. Do not modify this entry.

UseChangeJournal

Description—Specifies if the Carbonite driver change journal is used to track file changes. If
the source is rebooted, only the files identified in the change journal will be remirrored to the
target. This setting helps improvemirror times.

Chapter 7 Server and job settings 533

Values—0Do not track file changes and use the selected AutoRemirror option, 1 Track file
changes and remirror only changed files on source reboot. If the change journal cannot be used,
the selected AutoRemirror option will be used

Default—1

Console setting—Edit Server Properties page, Setup section, Mirror only changed files when
source reboots

Service restart required—Yes

Notes—If you reboot your source into safemode and changes aremade to the protected data
and then the source is rebooted normally, the Carbonite driver change journal will try but not be
able to synchronize the source and target correctly because it was not loaded in safemode.
Therefore, you shouldmanually start a differencemirror.

UseScheduledPause

Description—Used by Carbonite for internal schedule processing. Do not modify this setting.

VerifyLogAppend

Description—Specifies whether the DTVerify.log file will be appended to or overwritten

Values—0Overwrite, 1 Append

Default—1

Console setting—Edit Server Properties page, Logging section, Append

Service restart required—No

VerifyLogLimit

Description—Maximum size of the DTVerify.log file in bytes

Values—limited by available hard drive space, up to 4 GB

Default—1048576

Console setting—Edit Server Properties page, Logging section, Maximum size (under
Verification)

Service restart required—No

VerifyLogName

Description—Name of the verification log file

Values—any valid file name

Default—DTVerify.log

Console setting—Edit Server Properties page, Logging section, File name (under Verification)

Service restart required—No

VerifyRetryInterval

Description—The time, in minutes, between when one verification fails and a retry is
scheduled to begin.

Values—any valid number

Chapter 7 Server and job settings 534

Default—3

Console setting—None

Service restart required—No

VerifyRetryLimit

Description—The number of time a verification will be retried.

Values—any valid number

Default—5

Console setting—None

Service restart required—No

VersionInfo

Description—The version of Carbonite that was installed. Do not modify this entry.

WatchDogFailureProcessDump

Description—Creates a troubleshooting dump file if the Carbonite driver stops running

Values—0Do not create a dump file, 1 Create a dump file

Default—0

Console setting—None

Service restart required—No

WatchDogFailureScript

Description—Specifies the script to run if the Carbonite driver stops running

Values—Any valid path and script file

Default—<null>

Console setting—None

Service restart required—No

Chapter 7 Server and job settings 535

Linux server and job settings
The following table lists all of the Linux server and job settings, in decimal value.

Carbonite products share the same set of server and job settings. Youmay only have a subset of the
settings listed below depending on your Linux operating system and Carbonite product.

Carbonite Availability terminology is used in the following list. For example, failover is used for Carbonite
Availability and cutover for Carbonite Migrate.

ActivationCode

Description—24-character Carbonite license key

Values—Unique value for each customer

Default—N/A

Console setting—Edit Server Properties page, Licensing section, Current license keys

Service restart required—No

AdapterFlags

Description—Specifies the adapter to use when establishing a connection. This option should
not be changed.

Values—2Encryption, 4 Network Data Representation

Default—4

Console setting—None

Service restart required—No

Advertisement

Description—This setting is no longer used.

AllFailover

Description—Specifies which IP addresses to failover

Values—0Failover only monitored IP addresses, 1 Failover all IP addresses

Default—1

Console setting—None

Service restart required—No

AllMustFail

Description—Specifies whether or not all IP addresses must fail for failover to take place

Values—0Any IP address can fail, 1 All IP addresses must fail

Default—1

Console setting—None

Service restart required—No

Chapter 7 Server and job settings 536

AutoReconnect

Description—Specifies whether to reinstate the target connection(s) when the sourcemachine
is brought online after a sourcemachine failure

Values—0Do not reconnect, 1 Reconnect

Default—1

Console setting—None

Service restart required—Yes

AutoRemirror

Description—Specifies whether to remirror when a source is brought online after an auto-
disconnect

Values—0Do not compare or send any files, 1 Compare file attributes and send the attributes
and bytes that are different, 2 Do not compare files, just send all files (the entire file), 3
Compare file attributes and send the entire file for those that are different, 4 Compare file
attributes and data and send the attributes and bytes that are different

Default—1

Console setting—None

Service restart required—No

AutoRemirrorRetry

Description—Specifies how often, in seconds, the source should check for connections that
have been reconnected but still need to be remirrored

Values—any integer

Default—30

Console setting—None

Service restart required—No

AutoRetransmit

Description—Determines whether or not a source that has lost its connection with a target will
attempt to reconnect to the target

Values—0Do not attempt to reconnect, 1 Attempt to reconnect

Default—1

Console setting—None

Service restart required—No

BackupDir

Description—Location on the target of the backup of the protected data sets

Values—any valid path

Default—the location where the Carbonite files were installed

Console setting—None

Chapter 7 Server and job settings 537

Service restart required—No

CalculateOnConnect

Description—Specifies whether or not the amount of data to bemirrored should be calculated
on connection

Values—0Do not calculate on connection, 1 Calculate on connection

Default—1

Console setting—None

Service restart required—Yes

CaseSensitiveRepSetQueries

Description—This entry is no longer used.

ChecksumAll

Description—Indicates if a mirror, verify, or restore will ignore all attributes and perform a
checksum calculation on all files

Values—0Compare files by attribute, 1 Compare files by checksums

Default—1

Console setting—None

Service restart required—No

Cleaner

Description—Specifies if a cleanmirror will delete files on the target beforemirroring

Values—0Do not delete files beforemirroring, 1 Delete files beforemirroring

Default—0

Console setting—None

Service restart required—No

Notes—This option is only valid if you have this option enabled and use the clean option with
the DTCLmirror command.

ClientLog

Description—This setting is no longer used.

ClientLogName

Description—This setting is no longer used.

ConnectionFile

Description—Name of the database file containing connection information

Values—any valid file name

Default—connect.sts

Console setting—None

Chapter 7 Server and job settings 538

Service restart required—No

DataPath

Description—The location of the Carbonite file attribute, protected data set, connection, and
schedule database files

Values—any valid path

Default—the location where the Carbonite files were installed

Console setting—None

Service restart required—No

DefaultProtocol

Description—The default protocol

Values—1 IPv4 protocol only

Default—1

Console setting—None

Service restart required—Yes

DirUNetPort

Description—Port used for directed UDP communications

Values—1025 - 65535

Default—1505

Console setting—None

Service restart required—Source yes, Target no

DisableAttributeReplication

Description—Specifies whether or not attributes (user, group, or other permissions) are
replicated to the target

Values—0Enable attribute replication, 1 Disable attribute replication

Default—0

Console setting—None

Service restart required—Yes

EnablePerformanceTracking

Description—This entry will be used in the future.

EnableSparseFileMirroring

Description—Specifies if sparse files aremirrored

Values—0Disablemirroring of sparse files, 1 Enablemirroring of sparse files

Default—1

Console setting—None

Chapter 7 Server and job settings 539

Service restart required—No

EnableTaskCmdProcessing

Description—Queues tasks inline with replication data

Values—0Disable task command processing, 1 Enable task command processing

Default—0

Console setting—None

Service restart required—No

EnableVolumeLevelReplication

Description—Used by internally for full server jobs

EncryptionCipherFilter

Description—Encryption uses AES 256. Public key exchange uses industry-definedmethods
implemented by OpenSSL.

EncryptNetworkData

Description—Encrypts Carbonite data before it is sent from the source to the target

Values—0Disable data encryption, 1 Enable data encryption

Default—0

Console setting—Edit Server Properties page, General section, Encrypt network data

Service restart required—No

Notes—Both the source and target must be Carbonite encryption capable (Carbonite version
8.0.0 or later), however this option only needs to be enabled on the source or target in order to
encrypt data. Keep inmind that all jobs from a source with this option enabled or to a target with
this option enabled will have the same encryption setting. Changing this option will cause jobs
to auto-reconnect and possibly remirror.

ExtendedAttributes

Description—Specifies whether or not extended attributes are replicated to the target

Values—0Extended attributes are not mirrored or replicated, 1 Extended attributes aremirrored
and replicated

Default—0

Console setting—None

Service restart required—No

ExtensionNumber

Description—Used by the Carbonite log files.

FileQueueSize

Description—When amirror is started, one thread reads from the disk and builds the file
queue. Another set of threads reads files off of the queue and sends them to the target. This
setting is themaximum size of the queue in entries. If you had 100 files to bemirrored and this

Chapter 7 Server and job settings 540

was set to 16 (the default value), the first thread would fill the queue to amaximum of 16
entries.

Values—1 - 65535

Default—16

Console setting—None

Service restart required—No

Notes—This valuemust be set prior to starting themirror process. The higher the number, the
morememory that is used.

HBExternalRate

Description—Number of seconds between heartbeats

Values—0 - 65535

Default—3

Console setting—None

Service restart required—No

Notes—Carbonite recommends a value that is less than 10 (see HBTTL). Zero (0) turns the
heartbeats off.

HBInteralRate

Description—This entry is no longer used

HBLoopback

Description—This entry is no longer used.

HBTrace

Description—Specifies whether heartbeat debugging information is generated

Values—0not generated, 1 Generated

Default—0

Console setting—None

Service restart required—No

HBTTL

Description—Number of seconds without receiving a heartbeat before a remotemachine is
considered unavailable

Values—0 - 65535

Default—10

Console setting—None

Service restart required—No

HPQueueRatio

Description—Ratio of replication packets to onemirror packet

Chapter 7 Server and job settings 541

Values—1 - 65535

Default—5

Console setting—None

Service restart required—No for future connections, Yes for the current connection

Notes—AnHPQueueRatio of 5 indicates 5 replication packets to 1mirror packet.

IgnoreDeleteOps

Description—Specifies if file and directory delete operations will be replicated to the target

Values—0Delete operations are replicated to the target, 1 Delete operations are not replicated
to the target

Default—0

Console setting—None

Service restart required—No

LoadSourceTarget

Description—Specifies the functionality of the loadedmodules

Values—0Neither the source nor target modules are loaded, 1 Only the sourcemodule is
loaded, 2 Only the target module is loaded, 3 Both the source and target modules are loaded

Default—3

Console setting—None

Service restart required—Yes

LogAllOrphans

Description—Specifies whether success messages regarding orphan files are logged to the
Carbonite log

Values—0Do not log orphan file success messages to the Carbonite log, 1 Log orphan file
success messages to the Carbonite log

Default—0

Console setting—None

Service restart required—No

LogDir

Description—The location of the Carbonite messages/alerts, verification, and statistics log
files

Values—any valid path

Default—the location where the Carbonite files were installed

Console setting—None

Service restart required—Yes

Chapter 7 Server and job settings 542

LogFile

Description—The name of the Carbonite messages/alerts log file

Values—any valid file name

Default—DTLog

Console setting—None

Service restart required—No

LogMessageLevel

Description—Specifies the types of messages logged to the.dtl files

Values—0Nomessages will be logged, 1 Only alert messages will be logged, 2 Alert and
releasemessages will be logged, 3 Alert, release, and debugmessages will be logged

Default—2

Console setting—None

Service restart required—No

MaxChecksumBlocks

Description—Specifies the number of checksum values retrieved from the target

Values—any integer

Default—32

Console setting—None

Service restart required—No

MaxConnections

Description—Number of network requests that can be processed simultaneously.

Values—0 - 65535

Default—5

Console setting—None

Service restart required—Yes

Notes—Carbonite recommends that you not change this value.

MaxLogFileSize

Description—Maximum size, in bytes, of any .dtl log file

Values—limited by available disk space

Default—5242880

Console setting—None

Service restart required—No

Chapter 7 Server and job settings 543

MaxNumberofLogFiles

Description—Maximum number of .dtl log files that can exist at one time. When Carbonite
creates a new .dtl file, if this number is exceeded, the oldest .dtl file is deleted.

Values—1 - 999

Default—20

Console setting—None

Service restart required—No

MaxRemoveOrphansOpSize

Description—Determines whether or not Carbonite will send over multiple orphan operations.
Carbonite will send over the operations if a directory has more files than this number.

Values—0 - 131072

Default—1000

Console setting—None

Service restart required—No

MaxRetry

Description—A generic, application wide setting specifying the number of retry attempts for
processes such as creating sockets, starting the service, and so on

Values—any integer

Default—5

Console setting—None

Service restart required—Yes

MaxWriteChunkSize

Description—Maximummerged op size (in bytes) used during replication

Values—1 - 131072

Default—65536

Console setting—None

Service restart required—No

MemoryQueueToDiskThreshold

Description—A percentage of QmemoryBufferMax that will trigger queuing to disk.

Values—any valid percentage

Default—100

Console setting—None

Service restart required—Yes

Chapter 7 Server and job settings 544

MinCompressionFileSize

Description—Theminimum file size, in bytes, that will be compressed. Files smaller than this
size will not be compressed.

Values—any file size

Default—1024

Console setting—None

Service restart required—No

MirrorChunkSize

Description—Block size, in bytes, used in themirroring process

Values—1 - 1048576

Default—65536

Console setting—None

Service restart required—No

Notes—A higher block size value gives you better throughput, but only to a certain point, then it
starts usingmorememory (this has to do with the way memory is allocated and deallocated). A
lower block size value produces slower throughput, but uses memory efficiently.

MirrorOverwrite

Description—Determines if themirror process overwrites existing files

Values—0never overwrite, 1 always overwrite, 2 overwrite if older

Default—1

Console setting—None

Service restart required—No

MirrorPrompting

Description—This entry is no longer used.

MirrorQueueLimit

Description—Maximum number of mirror operations that can be queued on the source
machine

Values—1 - 65535

Default—1000

Console setting—None

Service restart required—No

MirrorZeroKFiles

Description—Specifies whether or not empty files, zero byte files, are included in amirror

Values—0Zero byte files are skipped and not mirrored to the target, 1 All files aremirrored to
the target

Chapter 7 Server and job settings 545

Default—1

Console setting—None

Service restart required—No

Notes—If MirrorZeroKFiles is enabled (0), zero byte files are skipped during a full mirror, file
differences mirror, and a verification with synchronization.

MissedPackets

Description—Specifies the number of requests sent by the target that go unanswered by the
source before failover occurs, when using network responses tomonitor for failover

Values—1 - 65535

Default—5

Console setting—None

Service restart required—No

MoveOrphanedFiles

Description—Specifies if orphaned files are deleted or moved to the directory specified by
MoveOrphansDir

Values—1Move, 0 Delete

Default—0

Console setting—None

Service restart required—No

MoveOrphansDir

Description—Indicates the name of the directory where orphaned files will bemoved if
MoveOrphanedFiles=1

Values—any valid path

Default—the location where the Carbonite files were installed

Console setting—None

Service restart required—No

NetPort

Description—Port connection for TCP communications

Values—1025 - 65535

Default—1500

Console setting—None

Service restart required—Yes

NetworkRetry

Description—Specifies the interval, in seconds, at which Carbonite will attempt to reconnect
to the target

Chapter 7 Server and job settings 546

Values—any positive number

Default—10

Console setting—None

Service restart required—No

NetworkStatusInterval

Description—An internal setting for network communications. Do not modify this setting.

NetworkTimeout

Description—Themaximum length of time, in seconds, to wait on a network connection. If
data is not received over a network connection within the specified time limit, the connection is
closed. During idle periods, Carbonite sends small amounts of keep-alive data at an interval 1/6
of the NetworkTimeout value to keep the socket from being inadvertently closed.

Values—any integer

Default—120

Console setting—None

Service restart required—No

Notes—If you are archiving files and it takes longer than the NetworkTimeout specified (for
example, this may happen if the DTArchiveBin is located on an alternate volume), the archive
operation will complete on the target, but the full file will not be changed to a link on the source
because the source detected the network timeout.

NodeLockedLicenseKey

Description—An internal setting for licensing. Do not modify this setting.

OpBufferSize

Description—Specifies the number of operations that can be stored in thememory queue prior
to queuing to disk.

Values—0There is no limit to the number of operations that can be stored in thememory
queue, 1 or any larger integer

Default—0

Console setting—None

Service restart required—No

PingFrequency

Description—Specifies, in seconds, how often a ping is sent to the source from amonitoring
target

Values—1 - 65535

Default—5

Console setting—None

Service restart required—No

Chapter 7 Server and job settings 547

PreFailbackWait

Description—Specifies whether or not to wait for the target pre-failback script to complete
before finishing a failback

Values—0Do not wait, 1Wait

Default—0

Console setting—None

Service restart required—No

PreFailoverWait

Description—Specifies whether or not to wait for the target pre-failover script to complete
before finishing a failover

Values—0Do not wait, 1Wait

Default—0

Console setting—None

Service restart required—No

QJournalDir

Description—The location where the queue is stored.

Values—any valid path

Default—the location specified during the installation

Console setting—None

Service restart required—No

Notes—For best results and reliability, you should select a dedicated, non-boot volume. The
queue should be stored on a dedicated, high-performance local volume (like SSD or high-speed
HDD backed volume). The volume should not be used for any high I/O activity applications.

QJournalFileSize

Description—The size, in MB, of each queuing transaction log file.

Values—any valid file size, up to 4095MB

Default—5

Console setting—None

Service restart required—No

QJournalFreeSpaceMin

Description—Theminimum amount of disk space, in MB, in the specified QJournalDir that
must be available at all times.

Values—dependent on the amount of physical disk space available

Default—250

Console setting—None

Chapter 7 Server and job settings 548

Service restart required—No

Notes—TheQJournalFreeSpaceMin should be less than the amount of physical disk space
minus QJournalSpaceMax.

QJournalPreload

Description—The number of operations being pulled from the disk queue at one time. Do not
modify this setting.

QJournalSpaceMax

Description—Themaximum amount of disk space, in MB, in the specified QJournalDir that
can be used for Carbonite queuing. When this limit is reached, Carbonite will automatically
begin the auto-disconnect process.

Values—dependent on the amount of physical disk space available

Default—Unlimited

Console setting—None

Service restart required—No

Notes—The unlimited setting allows the disk queue usage to automatically expand whenever
the available disk space expands. Setting this option to zero (0) disables disk queuing. Even if
you are using the unlimited option, Carbonite will only store 16,384 log files. If you are using the
default 5MB file size, this is approximately 80GB of data. If you anticipate needing to be able to
queuemore data than this, you should increase the size of the log files.

QLogWriteThrough

Description—Specifies if the disk queues are write-throughmode

Values—0Disk queues are not write-throughmode, 1 Disk queues are write-throughmode

Default—0

Console setting—None

Service restart required—No

Notes—While write-throughmodemay decrease the frequency of auto-disconnects, it may
also decrease the performance of the source server.

QMemoryBufferMax

Description—The amount of systemmemory, in MB, that, when exceeded, will trigger queuing
to disk.

Values—minimum 32, maximum 4095

Default—256

Console setting—None

Service restart required—Yes

QueueSizeAlertThreshold

Description—The percentage of the queue that must be in use to trigger an alert message

Values—any valid percentage

Chapter 7 Server and job settings 549

Default—50

Console setting—None

Service restart required—Yes

RemapLink

Description—Specifies how Carbonite handles a soft link

Values—0 If a soft link exists in a replication set and points to a file or directory inside the
replication set, the path contained in the link will retain its original mapping, 1 If a soft link exists
in a replication set and points to a file or directory inside the replication set, Carbonite will remap
the path contained in that link based on the Carbonite target path

Default—1

Console setting—None

Service restart required—No

RemoveAllOrphans

Description—Specifies if all orphan files will be removed or only those based on
RemoveOrphanTime

Values—0Remove orphans based on the entry RemoveOrphansTime, 1 Remove all orphans

Default—1

Console setting—None

Service restart required—No

RemoveOrphansTime

Description—Specifies the amount of time, in minutes, that must be expired before an orphan
file is removed

Values—1 - 131072

Default—60

Console setting—None

Service restart required—No

ReplaceTarget

Description—Specifies whether or not to replace the target identity with the source identity
during a failover

Values—0Do not replace, 1 Replace

Default—0

Console setting—None

Service restart required—No

RepSetDBName

Description—Name of the database that contains protected data set information

Chapter 7 Server and job settings 550

Values—any valid file name

Default—DblTake.db

Console setting—None

Service restart required—No

RestoreOverwrite

Description—Determines if the restoration process overwrites existing files

Values—0never overwrite, 1 always overwrite, 2 overwrite if older

Default—2

Console setting—None

Service restart required—No

RestorePrompting

Description—This entry is no longer used.

RestoreSpecialExecutableHandling

Description—Specifies if an alternate file is created and updated during a restoration for
executables that are in use

Values—0Do not use alternate files for executables that are in use, 1 Use alternate files for
executables that are in use

Default—1

Console setting—None

Service restart required—No

SaveStatFile

Description—Determines if the statistic.sts (statistics logging) file is saved or ovewritten

Values—0overwrite, 1 saved as statistic-old.sts

Default—1

Console setting—None

Service restart required—No

ScheduleFile

Description—Name of the database file that contains transmission scheduling information

Values—any valid file name

Default—Schedule.sts

Console setting—None

Service restart required—Yes

Chapter 7 Server and job settings 551

ScheduleInterval

Description—The number of seconds to wait before checking the transmission schedules to
see if transmission should be started or stopped

Values—1 - 3600

Default—1

Console setting—None

Service restart required—Yes

ShareUpdateInterval

Description—Specifies how often, in minutes, the share file will be sent to the target

Values—1 - 65535

Default—60

Console setting—None

Service restart required—No

SkipCompressionFileExt

Description—A period delimited list of file types that are not compressed, even if compression
is enabled.

Values—any period delimited list of file types

Default—
mp3.exe.wmv.wma.qt.mpg.mpeg.zip.jpg.jpeg.tiff.rar.cab.tgz.bz.bz2.z.pkg.sea.sit.sitx

Console setting—None

Service restart required—No

SmallFileThreshold

Description—Identifies the size of a small file. The entire file will bemirrored if the file size is
below this threshold, thus improvingmirror speeds.

Values—any integer

Default—65536

Console setting—None

Service restart required—No

SourcePendingAcks

Description—The number of operations received by the target queue in which the source is
waiting for a response

Values—100 - 20,000

Default—2000

Console setting—None

Service restart required—No

Chapter 7 Server and job settings 552

StatsFileName

Description—Default file for logging statistics

Values—any valid file name

Default—statistic.sts

Console setting—None

Service restart required—No

StatsLoggingOn

Description—Specifies if Carbonite logs statistics at startup

Values—0Stats logging does not start when Carbonite starts, 1 Stats logging starts when
Carbonite starts

Default—0

Console setting—None

Service restart required—No

StatsMaxFileSize

Description—Maximum size, in MB, for the statistic.sts file

Values—limited by available disk space

Default—10485760

Console setting—None

Service restart required—No

StatsMaxObjects

Description—This entry is no longer used.

StatsPort

Description—Port used by DTStat to gather Carbonite statistics

Values—1025 - 65535

Default—1506

Console setting—None

Service restart required—No

StatsShmSize

Description—This entry is no longer used.

StatsWriteInterval

Description—Interval, in minutes, in which statistics are written to the statistic.sts file

Values—0 - 65535

Default—5

Console setting—None

Chapter 7 Server and job settings 553

Service restart required—No

SystemMemoryLimit

Description—Set by the Double-Take service, each time it is started, to record the amount of
available memory.

TargetPaused

Description—Internal setting that indicates if the target machine is paused. Do not modify this
setting.

TargetPausedVirtual

Description—Internal setting that indicates which target machines are paused. Do not modify
this setting.

TCPBufferSize

Description—Size of the TCP/IP buffer in bytes.

Values—4096-7500000

Default—375000

Console setting—None

Service restart required—Yes

Notes—This is an operating system buffer, not a Carbonite buffer. If this option is set to zero
(0), Linux kernel versions 2.6.7 or later can automatically tune this buffer setting for best server
performance. Therefore, the recommended setting is 0 for automatic tuning, if you are using a
version 2.6.7 or later Linux kernel. If you want to reduce or control network traffic, you can
configure this option to a static size. The default is 375000 for a 1GB network. Modifications
should be relative to that speed using the calculation 37500 * network_speed_in_bits_per_
second / 100Mbit.

TGCloseDelay

Description—The length of time, in milliseconds, a file is held open on the target

Values—0 - 2000

Default—1000

Console setting—None

Service restart required—No

Notes—If disk caching on the target is disabled either manually or by default (for example, by
default on disks that host Active Directory database files), the target systemmay be slow
during amirror. If so, descreasing this setting to 100, 10, and 0 will result in incremental
improvements, with 0 returning the system performance to normal.

TGExecutionRetryLimit

Description—The number of times an unfinished operation will be retried on the target before it
is discarded. If this value is set to zero (0), an operation will never be discarded and will be
retried on the target until it is applied.

Values—0 - 65536

Chapter 7 Server and job settings 554

Default—0

Console setting—None

Service restart required—No

TGMirrorCapacityHigh

Description—Maximum percentage of systemmemory that can contain mirror data before the
target signals the source to pause the sending of mirror operations.

Values—2-75

Default—20

Console setting—None

Service restart required—No

TGMirrorCapacityLow

Description—Minimum percentage of systemmemory that can contain mirror data before the
target signals the source to resume the sending of mirror operations.

Values—1-75

Default—15

Console setting—None

Service restart required—No

Notes—Themaximum value forTGMirrorCapacityLow is either 75 or TGMirrorCapacityHigh,
which ever is lower.

TGRetryLocked

Description—Minimum number of seconds to wait before retrying a failed operation on a target

Values—0-65536

Default—3

Console setting—None

Service restart required—No

TGThreadCount

Description—This setting is no longer used

TGUseExtendedQueue

Description—Specifies whether or not Carbonite uses the extended queue

Values—0Use the extended queue, 1 Do not use the extended queue

Default—1

Console setting—None

Service restart required—No

Chapter 7 Server and job settings 555

TGWriteCache

Description—Specifies whether or not Carbonite uses the intermediate cache

Values—0Bypass the intermediate cache and write directly to disk, 1 Do not bypass the
intermediate cache

Default—0 for full server to ESX jobs, 1 for all other job types

Console setting—None

Service restart required—No

TGWriteFailureBeforeNotification

Description—Specifies the number of times an operation will be retried on the target before a
notification is sent to update the target status

Values—0-1024

Default—10

Console setting—None

Service restart required—Yes

Notes—If you change the setting to 0, the notification will be disabled. Changing this option will
only affect how the target status is displayed. To solve the underlying issue of why the
operations are failing will require investigation into the Carbonite log files.

UNetPort

Description—Port connection for UDP communications

Values—1025 - 65535

Default—1500

Console setting—None

Service restart required—Yes

UpdateInterval

Description—Interval, in seconds, at which the Failover Control Center updates themonitored
machines display

Values—1 - 9999

Default—1

Console setting—None

Service restart required—No

UserIntervention

Description—Specifies whether or not user intervention is required to initiate a failover

Values—0User intervention is not required, 1 User intervention is required

Default—1

Console setting—None

Chapter 7 Server and job settings 556

Service restart required—No

UseShareFile

Description—Specifies whether to create and use a share file or to use the shares that are
currently stored in the target memory

Values—0Use the shares that are currently stored in the target memory, 1 Create and use a
file containing the share information

Default—1

Console setting—None

Service restart required—No

VerifyLogAppend

Description—Specifies whether the DTVerify.log file will be appended to or overwritten

Values—0Overwrite, 1 Append

Default—1

Console setting—None

Service restart required—No

VerifyLogLimit

Description—Maximum size of the DTVerify.log file in bytes

Values—limited by available hard drive space, up to 4 GB

Default—1048576

Console setting—None

Service restart required—No

VerifyLogName

Description—Name of the verification log file

Values—any valid file name

Default—DTVerify.log

Console setting—None

Service restart required—No

VerifyRetryInterval

Description—The time, in minutes, between when one verification fails and a retry is
scheduled to begin.

Values—any valid number

Default—3

Console setting—None

Service restart required—No

Chapter 7 Server and job settings 557

VerifyRetryLimit

Description—The number of time a verification will be retried.

Values—any valid number

Default—5

Console setting—None

Service restart required—No

WarningPings

Description—This entry is no longer used.

Chapter 7 Server and job settings 558

	Chapter 1 Carbonite Availability and Carbonite Migrate PowerShell overview
	Carbonite PowerShell requirements
	Installing the Carbonite PowerShell module
	Importing the Carbonite PowerShell module

	Chapter 2 Cmdlets
	Add-DtPhysicalRule
	Add-DtUvraPhysicalRule
	Checkpoint-DtConnection
	Checkpoint-DtConnectionSourceQueue
	Close-DtWorkload
	Confirm-DtJobOptions
	Disconnect-DtServer
	Edit-DtJob
	Get-DtAccessLevel
	Get-DtActivationStatus
	Get-DtAllFailoverReports
	Get-DtBandwidthLimit
	Get-DtConnectionIds
	Get-DtDiagnostics
	Get-DtDnsOptions
	Get-DtEmailNotificationOptions
	Get-DtEventLogEntry
	Get-DtJob
	Get-DtJobActionStatus
	Get-DtLatestFailoverReport
	Get-DtLogicalItem
	Get-DtLogMessage
	Get-DtOnlineActivationRequest
	Get-DtOption
	Get-DtPathBlocking
	Get-DtPhysicalItem
	Get-DtProductInfo
	Get-DtQualificationResults
	Get-DtRecommendedFailbackOptions
	Get-DtRecommendedFailoverOptions
	Get-DtRecommendedJobOptions
	Get-DtRecommendedPathTransform
	Get-DtRecommendedRestoreOptions
	Get-DtRepairJobOptionsStatus
	Get-DtScriptCredentials
	Get-DtServerInfo
	Get-DtSnapshot
	Get-DtSourceQueueSnapshot
	Get-DtSourceQueueSnapshots
	Get-DtUvraRecommendedFailoverOptions
	Get-DtUvraRecommendedRemoveOptions
	Get-DtVerificationStatus
	Get-DtWorkload
	Get-DtWorkloadPhysicalItem
	Get-DtWorkloadType
	Install-DoubleTake
	Install-DtVmwareCertificate
	Invoke-DtAddShares
	Invoke-DtQueueTask
	Invoke-DtRemoveShares
	Merge-DtConsoleServerData
	New-DtFilesAndFoldersJob
	New-DtJob
	New-DtServer
	New-DtTaskParameters
	New-DtUri
	New-DtUvraServer
	New-DtWorkload
	Remove-DtJob
	Remove-DtPhysicalRule
	Remove-DtSnapshot
	Remove-DtSourceQueueSnapshot
	Repair-DtJobOptions
	Request-DtOnlineActivation
	Request-DtOnlineDeactivation
	Restart-DtReplicationService
	Resume-DtJob
	Resume-DtMirror
	Resume-DtTarget
	Save-DtConsoleServerData
	Save-DtJobDiagnostics
	Set-DtActivationCode
	Set-DtBandwidthLimit
	Set-DtEmailNotificationOptions
	Set-DtJobCredentials
	Set-DtLogicalItemSelection
	Set-DtOption
	Set-DtPathBlocking
	Set-DtScriptCredentials
	Set-DtServerCredential
	Set-DtVmwareCertificatePolicy
	Start-DtJob
	Start-DtJobFailback
	Start-DtJobFailover
	Start-DtJobRestore
	Start-DtJobReverse
	Start-DtMirror
	Start-DtOrphansProcessing
	Start-DtReplication
	Start-DtVerify
	Stop-DtJob
	Stop-DtMirror
	Stop-DtReplication
	Stop-DtReplicationService
	Suspend-DtJob
	Suspend-DtMirror
	Suspend-DtTarget
	Test-DtActiveDirectoryCredentials
	Test-DtEmailNotification
	Test-DtScript
	Test-DtScriptCredentials
	Test-DtVmwareCertificatePolicy
	Undo-DtJobFailover
	Uninstall-DoubleTake
	Update-DtJobStatus
	Update-DtShares
	Wait-DtConfirmJobOptions
	Wait-DtMirrorComplete

	Chapter 3 Classes
	ActivationAttribute
	ActivationCode
	ActivationInformation
	ActivationStatus
	ActivityStatusEntry
	ActivityToken
	ApplicationOptions
	BandwidthEntry
	BandwidthLimit
	BandwidthOptions
	BandwidthSchedule
	BandwidthScheduleEntry
	BandwidthSpecification
	ChangedItems
	CloudOptions
	ClusterFilesAndFoldersQualifcationResults
	ClusterOptions
	CompressionLevel
	ConnectionId
	ConnectionSchedule
	ConnectionStartParameters
	CoreConnectionDetails
	CoreConnectionOptions
	CoreMonitorDetails
	CoreMonitorOptions
	CoreQualificationResults
	Credentials
	CutoverDetails
	DeleteOptions
	Disk
	DiskOptions
	DnsDomainDetails
	DnsOptions
	DnsServerDetail
	EmailNotificationOptions
	EngineControlStatus
	EventLogEntry
	EventLogEntryType
	ExtendedLowLevelStates
	FailbackOptions
	FailoverOptions
	FailoverReport
	FailoverScriptConfiguration
	Feature
	FilesAndFoldersOptions
	FullServerFailoverOptions
	FullServerJobDetails
	FullServerNicMappings
	FullServerTestFailoverOptions
	Guid
	IpAddressMap
	JobAction
	JobInfo
	JobOptions
	JobQualificationResults
	JobStatistics
	JobStatus
	LogicalItems
	LogicalVolume
	LogMessage
	LvmOptions
	MachineInfoClass
	MirrorParameters
	MonitorConfiguration
	MonitoredAddressConfiguration
	MonitoredAddressStatus
	MonitoringOptions
	NetworkInterfaceInfo
	OperatingSystemInfo
	OperatingSystemVersion
	OrphansSchedule
	Partition
	PathBlocking
	PathTransformation
	PhysicalItem
	PhysicalRule
	PhysicalVolume
	ProductInfo
	ProductVersion
	PSCredential
	RecommendedFailbackOptions
	RecommendedFailoverOptions
	RecommendedJobOptions
	RecommendedRestoreOptions
	RepairStatus
	ReplicaVmInfo
	RestoreOptions
	RestoreParameters
	ReverseOptions
	ScriptPoint
	Server
	ServerActivationInformation
	ServerInfo
	ServerQualificationResults
	ServiceInformation
	ServiceMonitoringOptions
	SnapshotAdvancedOptions
	SnapshotEntry
	SnapshotMonitorOptions
	SnapshotSchedule
	SnapshotSize
	SourceQueueSnapshotEntry
	SystemStateOptions
	TargetFileServerQualificationResults
	TargetServicesOptions
	TargetServicesToStop
	TargetStateInfo
	TaskParameters
	TestFailoverOptions
	TestFailoverServerCredentials
	TimeClass
	UnicastIPAddressInfo
	UnmanagedConnectionOptions
	VerificationStatus
	VerificationStep
	VerifySchedule
	VirtualNetworkInterfaceInfo
	VirtualSwitchInfo
	VirtualSwitchMapping
	VmInfo
	Volume
	VolumeGroup
	VolumeOptions
	VolumeQualificationResults
	VRAOptions
	VRAQualificationResults
	VRAWorkloadCustomizationOptions
	Workload
	WorkloadSupportSummary
	WorkloadType

	Chapter 4 Enumerations
	AccessLevel
	ActionStatus
	ActiveDirectoryFailoverOptions
	ActivityCompletionStatus
	BandwidthEntryType
	BandwidthScheduleMode
	BandwidthSpecificationType
	ClusterResourceState
	DesktopInteractionMode
	DiskConfigStrategy
	EngineJobType
	FailoverDataAction
	FailoverIPAddressesOption
	FailoverItems
	FailoverMode
	FailoverProcessingOptions
	FailoverReplaceActions
	FailoverStyle
	FailoverTrigger
	FailoverType.Monitor
	FailoverType.Options
	FileSystemAttributes
	Health
	HighAvailabilityState
	HighLevelState
	InclusionMode
	LicenseType
	MirrorComparisonCriteria
	MirrorOperationOptions
	MirrorState
	OperatingSystemArchitecture
	OperatingSystemProductType
	PathBlockingMode
	PingMethods
	RecordType
	RecursionMode
	ReplicationSetUsageType
	ReplicationState
	RestoreParametersRestoreOptions
	RestoreStates
	RestoreStatus
	SaturationLevel
	ScriptExecutionMode
	ScriptPointType
	SmtpConnectionSecurity
	SnapshotAttributes
	SnapshotCreationReason
	SnapshotQuality
	SnapshotState
	TargetServiceStatus
	TargetStates
	TransmissionMode
	VmwareCertificatePolicy
	Weekdays

	Chapter 5 Scripting examples
	Job creation scripts
	Creating a files and folders job for Windows
	Creating a full server job for Windows
	Creating a full server job for Linux
	Creating a SQL job
	Creating a full server to ESX job for Windows
	Creating a full server to ESX job for Linux
	Creating a full server to Hyper-V job
	Creating a files and folders migration job for Windows
	Creating a full server migration job for Windows
	Creating a full server to ESX migration job for Windows
	Creating a full server to Hyper-V migration job

	Job information scripts
	Viewing job Event messages
	Creating a job diagnostics file

	Job control scripts
	Validating an existing job
	Editing a files and folders job for Windows
	Changing the compression setting for an existing job
	Stopping and starting a job
	Pausing and resuming a job
	Viewing and setting job and server options

	Other sample scripts
	Pausing and resuming your target
	Shutting down the Double-Take service on a server
	Hiding your password in a PowerShell script

	Chapter 6 Carbonite Replication Console Set Options page to JobOptions class mapping
	Chapter 7 Server and job settings
	Windows server and job settings
	Linux server and job settings

